Skip to main content
Log in

Biochemical and kinetic characterization of the multifunctional β-glucosidase/β-xylosidase/α-arabinosidase, Bgxa1

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Functional screening of a metagenomic library constructed with DNA extracted from the rumen contents of a grass/hay-fed dairy cow identified a protein, β-glucosidase/β-xylosidase/α-arabinosidase gene (Bgxa1), with high levels of β-glucosidase activity. Purified Bgxa1 was highly active against p-nitrophenyl-β-d-glucopyranoside (pNPG), cellobiose, p-nitrophenyl-β-d-xylopyranoside (pNPX) and p-nitrophenyl-α-d-arabinofuranoside (pNPAf), suggesting it is a multifunctional β-glucosidase/β-xylosidase/α-arabinosidase. Kinetic analysis of the protein indicated that Bgxa1 has the greatest catalytic activity against pNPG followed by pNPAf and pNPX, respectively. The catalytic efficiency of β-glucosidase activity was 100× greater than β-xylosidase or α-arabinosidase. The pH and temperature optima for the hydrolysis of selected substrates also differed considerably with optima of pH 6.0/45 °C and pH 8.5/40 °C for pNPG and pNPX, respectively. The pH dependence of pNPAf hydrolysis displayed a bimodal distribution with maxima at both pH 6.5 and pH 8.5. The enzyme exhibited substrate-dependent responses to changes in ionic strength. Bgxa1 was highly stable over a broad pH range retaining at least 70 % of its relative catalytic activity from pH 5.0–10.0 with pNPG as a substrate. Homology modelling was employed to probe the structural basis of the unique specificity of Bgxa1 and revealed the deletion of the PA14 domain and insertions in loops adjacent to the active site. This domain has been found to be an important determinant in the substrate specificity of proteins related to Bgxa1. It is postulated that these indels are, in part, responsible for the multifunctional activity of Bgxa1. Bgxa1 acted synergistically with endoxylanase (Xyn10N18) when incubated with birchwood xylan, increasing the release of reducing sugars by 168 % as compared to Xyn10N18 alone. Examination of Bgxa1 and Xyn10N18 synergy with a cellulase for the saccharification of alkali-treated straw revealed that synergism among the three enzymes enhanced sugar release by 180 % as compared to cellulase alone. Our results suggest that Bgxa1 has a number of properties that make it an interesting candidate for the saccharification of lignocellulosic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bao L, Huang Q, Chang L, Sun Q, Zhou J, Lu H (2012) Cloning and characterization of two β-glucosidase/xylosidase enzymes from yak rumen metagenome. Appl Biochem Biotechnol 166:72–86

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Shimon LJW, Shoham Y, Lamed R (1998) Cellulosomes-structure and ultrastructure. J Struct Biol 124:221–234

    Article  PubMed  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  PubMed  CAS  Google Scholar 

  • Brulc JBJ, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci 106:1948–1953

    Article  PubMed Central  PubMed  Google Scholar 

  • Brunner F, Wirtz W, Rose JK, Darvill AG, Govers F, Scheel D, Nürnberger T (2002) A β-glucosidase/xylosidase from the phytopathogenic oomycete, Phytophthora infestans. Phytochemistry 59:689–696

    Article  PubMed  CAS  Google Scholar 

  • Del Pozo MV, Fernández-Arrojo L, Gil-Martinez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA, Golyshina OV, Newbold CJ, Polaina J, Ferrer M, Golyshin PN (2012) Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol Biofuels 5:73

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eswar N, Marti-Renom MA, Webb B, Madhusudhan MS, Eramian D, Shen M, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 15:5.6.1–5.6.30. doi:10.1002/0471250953.bi0506s15

    Google Scholar 

  • Gong X, Gruniniger RJ, Forster RJ, Teather RM, McAllister TA (2013) Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library. Appl Microbiol Biotechnol 97:2423–2431

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Gruninger RJ, Qi M, Paterson L, Forster RJ, Teather RM, McAllister TA (2012) Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res Notes 5:566–576

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  PubMed  CAS  Google Scholar 

  • Han SO, Zhao L, Inui M, Doi RH (2004) Isolation and expression of the xynB gene and its product, XynB, a consistent component of the Clostridium cellulovorans cellulosome. J Bacteriol 186:8347–8355

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harvey AJ, Hrmova M, De Gori R, Varghese JN, Fincher GB (2000) Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins 41:257–269

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie R, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref 1:119–134

    Article  CAS  Google Scholar 

  • Khandeparker R, Numan MT (2008) Bifunctional xylanases and their potential use in biotechnology. J Ind Microbiol Biotechnol 35:635–644

    Article  PubMed  CAS  Google Scholar 

  • Kohn RA, Dunlap TF (1998) Calculation of the buffering capacity of bicarbonate in the rumen and in vitro. J Anim Sci 76:1702–1709

    PubMed  CAS  Google Scholar 

  • Krause DO, Denmana SE, Mackiec RI, Morrisond M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen, microbiology, ecology and genomics. FEMS Microbiol Rev 27:663–693

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with α-l-arabinofuranosidase and β-d-xylosidase activity. Characterization, primary structures, and COOH-terminal processing. J Biol Chem 278:5377–5387

    Article  PubMed  CAS  Google Scholar 

  • Levasseur A, Navarro D, Punt PJ, Belaїch JP, Asther M, Record E (2005) Construction of engineered bifunctional enzymes and their overproduction in Aspergillus niger for improved enzymatic tools to degrade agricultural by-products. Appl Environ Microbiol 71:8132–8140

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lynd L, Weimer P, Van Zyl W, Pretorius I (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol R 66:506–577

    Article  CAS  Google Scholar 

  • Mai V, Wiegel J, Lorenz WW (2000) Cloning, sequencing, and characterization of the bifunctional xylosidase/arabinosidase from the anaerobic thermophile Thermoanaerobacter ethanolicus. Gene 247:137–143

    Article  PubMed  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Olver B, Van Dyk JS, Beukes N, Pletschke BI (2011) Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates. 3. Biotech 1:187–192

    Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Palackal N, Lyon CS, Zaidi S, Luginbühl P, Dupree P, Goubet F, Macomber JL, Short JM, Hazlewood GP, Robertson DE, Steer BA (2007) A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Appl Microbiol Biotechnol 74:113–124

    Article  PubMed  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Pozzo T, Pasten JL, Karlsson EN, Logan DT (2010) Structural and functional analyses of β-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3. J Mol Biol 397:724–739

    Article  PubMed  CAS  Google Scholar 

  • Qi M, Wang P, O'Toole N, Barboza PS, Ungerfeld E, Leigh MB, Selinger LB, Butler G, Tsang A, McAllister TA, Forster RJ (2011) Snapshot of the eukaryotic gene expression in muskoxen rumen—a metatranscriptomic approach. PLoS ONE 6:e20521

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Science 292:1119–1122

    Article  PubMed  CAS  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  PubMed  CAS  Google Scholar 

  • Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

    Article  PubMed  CAS  Google Scholar 

  • Ullah AH, Sethumadhavan K, Mullaney EJ (2008) Salt effect on the pH profile and kinetic parameters of microbial phytases. J Agric Food Chem 56:3398–3402

    Article  PubMed  CAS  Google Scholar 

  • Varghese JN, Hrmova M, Fincher GB (1999) Three-dimensional structure of a barley β-d-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure 7:179–190

    Article  PubMed  CAS  Google Scholar 

  • Wagschal K, Heng C, Lee CC, Wong DW (2009) Biochemical characterization of a novel dual-function arabinofuranosidase/xylosidase isolated from a compost starter mixture. Appl Microbiol Biotechnol 81:855–863

    Article  PubMed  CAS  Google Scholar 

  • Wallecha A, Mishra S (2003) Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochim Biophys Acta 1649:74–84

    Article  PubMed  CAS  Google Scholar 

  • Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073–1086

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Y, Spratling BM, ZoBell DR, Wiedmeier RD, McAllister TA (2004) Effect of alkali pretreatment of wheat straw on the efficacy of exogenous fibrolytic enzymes. J Anim Sci 82:198–208

    PubMed  CAS  Google Scholar 

  • Yoshida E, Hidaka M, Fushinobu S, Koyanagi T, Minami H, Tamaki H, Kitaoka M, Katayama T, Kumagai H (2010) Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus. Biochem J 431:39–49

    Article  PubMed  CAS  Google Scholar 

  • Zhang YHP, Himmel M, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Zhou J, Bao L, Chang L, Liu Z, You C, Lu H (2012) β-Xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett Appl Microbiol 54:79–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Agriculture and Agri-Food Canada and the genomics program of Genome Alberta. The authors would like to thank K. Munns for assistance with the editing and submission of this manuscript and L. Jin for assistance with the preparation and grinding of the alkali-treated barley straw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. McAllister.

Additional information

R. J. Gruninger and X. Gong contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruninger, R.J., Gong, X., Forster, R.J. et al. Biochemical and kinetic characterization of the multifunctional β-glucosidase/β-xylosidase/α-arabinosidase, Bgxa1. Appl Microbiol Biotechnol 98, 3003–3012 (2014). https://doi.org/10.1007/s00253-013-5191-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5191-4

Keywords

Navigation