Skip to main content

Advertisement

Log in

The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces tsukubaensis is a well-established industrial tacrolimus producer strain, but its molecular genetics is very poorly known. This information shortage prevents the development of tailored mutants in the regulatory pathways. A region (named bul) contains several genes involved in the synthesis and control of the gamma-butyrolactone autoregulator molecules. This region contains ten genes (bulA, bulZ, bulY, bulR2, bulS2, bulR1, bulW, bluB, bulS1, bulC) including two γ-butyrolactone receptor homologues (bulR1, bulR2), two putative gamma-butyrolactone synthetase homologues (bulS1, bulS2) and two SARP regulatory genes (bulY, bulZ). Analysis of the autoregulatory element (ARE)-like sequences by electrophoretic mobility shift assays and footprinting using the purified BulR1 and BulR2 recombinant proteins revealed six ARE regulatory sequences distributed along the bul cluster. These sequences showed specific binding of both BulR1 (the gamma-butyrolactone receptor) and BulR2, a possible pseudo γ-butyrolactone receptor. The protected region in all cases covered a 28-nt sequence with a palindromic structure. Optimal docking area analysis of BulR1 proved that this protein can be presented as either monomer or dimer but not oligomers and that it binds to the conserved ARE sequence in both strands. The effect on tacrolimus production was analysed by deletion of the bulR1 gene, which resulted in a strong decrease of tacrolimus production. Meanwhile, the ΔbulR2 mutation did not affect the biosynthesis of this immunosuppressant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akimoto K, Kusunoki Y, Nishio S, Takagi K, Kawai S (2008) Safety profile of tacrolimus in patients with rheumatoid arthritis. Clin Rheumatol 27:1393–1397. doi:10.1007/s10067-008-0931-z

    Article  PubMed  Google Scholar 

  • Arakawa K, Mochizuki S, Yamada K, Noma T, Kinashi H (2007) Gamma-butyrolactone autoregulator-receptor system involved in lankacidin and lankamycin production and morphological differentiation in Streptomyces rochei. Microbiology 153:1817–1827. doi:10.1099/mic.0.2006/002170-0

    Article  CAS  PubMed  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. doi:10.1093/bioinformatics/bti770

    Article  CAS  PubMed  Google Scholar 

  • Barreiro C, Martínez-Castro M (2014) Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Appl Microbiol Biotechnol 98:497–507. doi:10.1007/s00253-013-5362-3

    Article  CAS  PubMed  Google Scholar 

  • Barreiro C, Prieto C, Sola-Landa A, Solera E, Martínez-Castro M, Pérez-Redondo R, García-Estrada C, Aparicio JF, Fernández-Martínez LT, Santos-Aberturas J, Salehi-Najafabadi Z, Rodríguez-García A, Tauch A, Martín JF (2012) Draft genome of Streptomyces tsukubaensis NRRL 18488, the producer of the clinically important immunosuppressant tacrolimus (FK506). J Bacteriol 194:3756–3757. doi:10.1128/JB.00692-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benson A, Barrett T, Sparberg M, Buchman AL (2008) Efficacy and safety of tacrolimus in refractory ulcerative colitis and Crohn’s disease: a single-center experience. Inflamm Bowel Dis 14:7–12. doi:10.1002/ibd.20263

    Article  PubMed  Google Scholar 

  • Beppu T, Horinouchi S (2007) Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Proc Jpn Acad 83:277–295

    Article  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215. doi:10.1016/j.mib.2005.02.016

    Article  CAS  PubMed  Google Scholar 

  • Bignell DRD, Bate N, Cundliffe E (2007) Regulation of tylosin production: role of a TylP-interactive ligand. Mol Microbiol 63:838–847. doi:10.1111/j.1365-2958.2006.05541.x

    Article  CAS  PubMed  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101. doi:10.1063/1.2408420

    Article  PubMed  Google Scholar 

  • Chater KF, Chandra G (2008) The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 46:1–11. doi:10.1007/s12275-007-0233-1

    Google Scholar 

  • Choi S-U, Lee C-K, Hwang Y-I, Kinoshita H, Nihira T (2004) Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch Microbiol 181:294–298. doi:10.1007/s00203-004-0654-8

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645. doi:10.1073/pnas.120163297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dé Tran QH, Guay E, Chartier S, Tousignant J (2001) Tacrolimus in dermatology. J Cutan Med Surg 5:329–335. doi:10.1007/s102270000022

    Article  PubMed  Google Scholar 

  • Demain AL (2009) Antibiotics: natural products essential to human health. Med Res Rev 29:821–842. doi:10.1002/med.20154

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (2005) PHYLIP (phylogeny inference package) version 3.6

  • Fernandez-Recio J, Totrov M, Skorodumov C, Abagyan R (2005) Optimal docking area: a new method for predicting protein-protein interaction sites. Proteins 58:134–143. doi:10.1002/prot.20285

    Article  CAS  PubMed  Google Scholar 

  • Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229

    Article  CAS  PubMed  Google Scholar 

  • Folcher M, Gaillard H, Nguyen LT, Nguyen KT, Lacroix P, Bamas-Jacques N, Rinkel M, Thompson CJ (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306. doi:10.1074/jbc.M101109200

    Article  CAS  PubMed  Google Scholar 

  • Goranovič D, Blažič M, Magdevska V, Horvat J, Kuščer E, Polak T, Santos-Aberturas J, Martínez-Castro M, Barreiro C, Mrak P, Kopitar G, Kosec G, Fujs S, Martín JF, Petković H (2012) FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis. BMC Microbiol 12:238. doi:10.1186/1471-2180-12-238

    Article  PubMed Central  PubMed  Google Scholar 

  • Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E (2010) Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156:2343–2353. doi:10.1099/mic.0.038281-0

    Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546. doi:10.1073/pnas.0337542100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725. doi:10.1002/prot.21123

    Article  CAS  PubMed  Google Scholar 

  • Ingram JR, Martin JA, Finlay AY (2009) Impact of topical calcineurin inhibitors on quality of life in patients with atopic dermatitis. Am J Clin Dermatol 10:229–237

    Article  PubMed  Google Scholar 

  • Jami M-S, Barreiro C, García-Estrada C, Martín J-F (2010) Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics 9:1182–1198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  • Kato J, Funa N, Watanabe H, Ohnishi Y, Horinouchi S (2007) Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc Natl Acad Sci U S A 104:2378–2383. doi:10.1073/pnas.0607472104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kendrew SG, Petkovic H, Gaisser S, Ready SJ, Gregory MA, Coates NJ, Nur-e-alam M, Warneck T, Suthar D, Foster TA, Mcdonald L, Schlingman G, Koehn FE, Skotnicki JS, Carter GT, Moss SJ, Zhang M, Martin CJ, Sheridan RM, Wilkinson B (2013) Recombinant strains for the enhanced production of bioengineered rapalogs. Metab Eng 15:167–173. doi:10.1016/j.ymben.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  • Khodakaramian G, Lissenden S, Gust B, Moir L, Hoskisson PA, Chater KF, Smith MCM (2006) Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. Nucleic Acids Res 34:e20. doi:10.1093/nar/gnj019

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531. doi:10.1093/nar/gkh468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H (1987a) FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 40:1249–1255

    Article  CAS  Google Scholar 

  • Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, Goto T, Okuhara M, Kohsaka M, Aoki H (1987b) FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo) 40:1256–1265

    Article  CAS  Google Scholar 

  • Kinoshita H, Ipposhi H, Okamoto S, Nakano H, Nihira T, Yamada Y (1997) Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J Bacteriol 179:6986–6993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitani S, Hoshika M, Nihira T (2008a) Disruption of sscR encoding a gamma-butyrolactone autoregulator receptor in Streptomyces scabies NBRC 12914 affects production of secondary metabolites. Folia Microbiol (Praha) 53:115–124. doi:10.1007/s12223-008-0017-y

    Article  CAS  Google Scholar 

  • Kitani S, Iida A, Izumi T, Maeda A, Yamada Y, Nihira T (2008b) Identification of genes involved in the butyrolactone autoregulator cascade that modulates secondary metabolism in Streptomyces lavendulae FRI-5. Gene 425:9–16. doi:10.1016/j.gene.2008.07.043

    Article  CAS  PubMed  Google Scholar 

  • Kitani S, Doi M, Shimizu T, Maeda A, Nihira T (2010) Control of secondary metabolism by farX, which is involved in the gamma-butyrolactone biosynthesis of Streptomyces lavendulae FRI-5. Arch Microbiol 192:211–220. doi:10.1007/s00203-010-0550-3

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306. doi:10.1093/bib/bbn017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Wu J, Tao W, Zhao C, Wang Y, He X, Chandra G, Zhou X, Deng Z, Chater KF, Tao M (2007) A genetic and bioinformatic analysis of Streptomyces coelicolor genes containing TTA codons, possible targets for regulation by a developmentally significant tRNA. FEMS Microbiol Lett 266:20–28. doi:10.1111/j.1574-6968.2006.00494.x

    Article  CAS  PubMed  Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  CAS  PubMed  Google Scholar 

  • Martín J-F, Liras P (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13:263–273. doi:10.1016/j.mib.2010.02.008

    Article  PubMed  Google Scholar 

  • Martín JF, Liras P (2012) Cascades and networks of regulatory genes that control antibiotic biosynthesis. Subcell Biochem 64:115–138. doi:10.1007/978-94-007-5055-5_6

    Article  PubMed  Google Scholar 

  • Martínez-Castro M, Barreiro C, Romero F, Fernández-Chimeno RI, Martín JF (2011) Streptomyces tacrolimicus sp. nov., a low producer of the immunosuppressant tacrolimus (FK506). Int J Syst Evol Microbiol 61:1084–1088

    Article  PubMed  Google Scholar 

  • Martínez-Castro M, Salehi-Najafabadi Z, Romero F, Pérez-Sanchiz R, Fernández-Chimeno RI, Martín JF, Barreiro C (2013) Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer “Streptomyces tsukubaensis”. Appl Microbiol Biotechnol 97:2139–2152. doi:10.1007/s00253-012-4364-x

    Article  PubMed  Google Scholar 

  • Matsuno K, Yamada Y, Lee C-K, Nihira T (2004) Identification by gene deletion analysis of barB as a negative regulator controlling an early process of virginiamycin biosynthesis in Streptomyces virginiae. Arch Microbiol 181:52–59. doi:10.1007/s00203-003-0625-5

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto KT, Kitani S, Komatsu M, Ikeda H, Nihira T (2011) The autoregulator receptor homologue AvaR3 plays a regulatory role in antibiotic production, mycelial aggregation and colony development of Streptomyces avermitilis. Microbiology 157:2266–2275. doi:10.1099/mic.0.048371-0

    Article  CAS  PubMed  Google Scholar 

  • Natsume R, Ohnishi Y, Senda T, Horinouchi S (2004) Crystal structure of a γ-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). J Mol Biol 336:409–419. doi:10.1016/j.jmb.2003.12.040

    Article  CAS  PubMed  Google Scholar 

  • Nosé S, Klein M (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076. doi:10.1080/00268978300102851

    Article  Google Scholar 

  • Novakova R, Rehakova A, Kutas P, Feckova L, Kormanec J (2011) The role of two SARP family transcriptional regulators in regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology 157:1629–1639. doi:10.1099/mic.0.047795-0

    Article  CAS  PubMed  Google Scholar 

  • Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182

    Article  CAS  Google Scholar 

  • Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356. doi:10.1128/MMBR.69.2.326-356.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. doi:10.1038/nprot.2010.5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salehi-Najafabadi Z, Barreiro C, Martínez-Castro M, Solera E, Martín JF (2011) Characterisation of a γ-butyrolactone receptor of Streptomyces tacrolimicus: effect on sporulation and tacrolimus biosynthesis. Appl Microbiol Biotechnol 92:971–984. doi:10.1007/s00253-011-3466-1

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Santos-Beneit F, Rodríguez-García A, Sola-Landa A, Martín JF (2009) Cross-talk between two global regulators in Streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol Microbiol 72:53–68. doi:10.1111/j.1365-2958.2009.06624.x

    Article  CAS  PubMed  Google Scholar 

  • Schneider TD (1996) Reading of DNA sequence logos: prediction of major groove binding by information theory. Methods Enzymol 274:445–455

    Article  CAS  PubMed  Google Scholar 

  • Schneider TD (2000) Evolution of biological information. Nucleic Acids Res 28:2794–2799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider TD, Stormo GD, Gold L, Ehrenfeucht A (1986) Information content of binding sites on nucleotide sequences. J Mol Biol 188:415–431

    Article  CAS  PubMed  Google Scholar 

  • Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG (2002) Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR. EMBO J 21:1210–1218. doi:10.1093/emboj/21.5.1210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340. doi:10.1099/00207713-16-3-313

    Article  Google Scholar 

  • Stratigopoulos G, Gandecha AR, Cundliffe E (2002) Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylP, a deduced gamma-butyrolactone receptor. Mol Microbiol 45:735–744

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama M, Onaka H, Nakagawa T, Horinouchi S (1998) Site-directed mutagenesis of the A-factor receptor protein: Val-41 important for DNA-binding and Trp-119 important for ligand-binding. Gene 222:133–144

    Article  CAS  PubMed  Google Scholar 

  • Takano E (2006) Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294. doi:10.1016/j.mib.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41:1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Tao M, Long F, Bibb MJ, Wang L, Li W, Buttner MJ, Bibb MJ, Deng ZX, Chater KF (2003) A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol 50:475–486

    Article  CAS  PubMed  Google Scholar 

  • Toukmaji A, Sagui C, Board J, Darden T (2000) Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions. J Chem Phys 113:10913

    Article  CAS  Google Scholar 

  • Wallemacq PE, Reding R (1993) FK506 (tacrolimus), a novel immunosuppressant in organ transplantation: clinical, biomedical, and analytical aspects. Clin Chem 39:2219–2228

    CAS  PubMed  Google Scholar 

  • Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35:3375–3382. doi:10.1093/nar/gkm251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang S-H, Li J, Yin H, Zheng J-T, Yang X, Wang H-B, Luo J-L, Bai H, Yang K-Q (2009) Application of a double-reporter-guided mutant selection method to improve clavulanic acid production in Streptomyces clavuligerus. Metab Eng 11:310–318. doi:10.1016/j.ymben.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Wang J, Wang L, Tian X, Yang H, Fan K, Yang K, Tan H (2010) “Pseudo” gamma-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285:27440–27448. doi:10.1074/jbc.M110.143081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhai L, Lin S, Qu D, Hong X, Bai L, Chen W, Deng Z (2012) Engineering of an industrial polyoxin producer for the rational production of hybrid peptidyl nucleoside antibiotics. Metab Eng 14:388–393. doi:10.1016/j.ymben.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Cheng X, Liu Y, Deng Z, You D (2013) Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Metab Eng 19C:69–78. doi:10.1016/j.ymben.2013.06.003

    Article  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the CICYT Ministry of Innovation and Science (Madrid, Spain) [BIO2006-14853-C02-01 (CONSOLIDER)] and from the ERA-IB joint call2 [INMUNOTEC (PIM2010EEI-00677)] of the Ministry of Economy and Competitively of Spain. C. Barreiro was supported by the Union European program: ERA IB [BioProChemBB project (EIB.08.008)]. We acknowledge the excellent support of M. Martínez-Castro, S. Albillos, C. Prieto and P. Liras, as well as the technical assistance of the INBIOTEC staff B. Martín, J. Merino, A. Casinave and A. Mulero.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Barreiro or Juan F. Martín.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2766 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehi-Najafabadi, Z., Barreiro, C., Rodríguez-García, A. et al. The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. Appl Microbiol Biotechnol 98, 4919–4936 (2014). https://doi.org/10.1007/s00253-014-5595-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5595-9

Keywords

Navigation