Skip to main content
Log in

Fermentative production of 1-propanol from sugars using wild-type and recombinant Shimwellia blattae

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Shimwellia blattae is an enteric bacterium and produces endogenous enzymes that convert 1,2-propanediol (1,2-PD) to 1-propanol, which is expected to be used as a fuel substitute and a precursor of polypropylene. Therefore, if S. blattae could be induced to generate its own 1,2-PD from sugars, it might be possible to produce 1-propanol from sugars with this microorganism. Here, two 1,2-PD production pathways were constructed in S. blattae, resulting in two methods for 1-propanol production with the bacterium. One method employed the L-rhamnose utilization pathway, in which L-rhamnose is split into dihydroxyacetone phosphate and 1,2-PD. When wild-type S. blattae was cultured with L-rhamnose, an accumulation of 1,2-PD was observed. The other method for producing 1,2-PD was to introduce an engineered 1,2-PD production pathway from glucose into S. blattae. In both cases, the produced 1,2-PD was then converted to 1-propanol by 1,2-PD converting enzymes, whose production was induced by the addition of glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altaras NE, Cameron DC (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65:1180–1185

  • Altaras NE, Cameron DC (2000) Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol Prog 16:940–946

    Article  CAS  PubMed  Google Scholar 

  • Andres S, Wiezer A, Bendfeldt H, Waschkowitz T, Toeche-Mittler C, Daniel R (2004) Insights into the genome of the enteric bacterium Escherichia blattae: cobalamin (B12) biosynthesis, B12-dependent reactions, and inactivation of the gene region encoding B12-dependent glycerol dehydratase by a new mu-like prophage. J Mol Microbiol Biotechnol 8:150–168

    Article  CAS  PubMed  Google Scholar 

  • Atsumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  PubMed  Google Scholar 

  • Badía J, Ros J, Aguilar J (1985) Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae. J Bacteriol 161:435–437

    PubMed Central  PubMed  Google Scholar 

  • Baldomà L, Aguilar J (1988) Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation. J Bacteriol 170:416–421

    PubMed Central  PubMed  Google Scholar 

  • Bennett G, San K (2001) Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl Microbiol Biotechnol 55:1–9

  • Berrios-Rivera SJ, San KY, Bennett GN (2003) The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli. J Ind Microbiol Biotechnol 30:34–40

    CAS  PubMed  Google Scholar 

  • Boronat A, Aguilar J (1979) Rhamnose-induced propanediol oxidoreductase in Escherichia coli: purification, properties, and comparison with the fucose-induced enzyme. J Bacteriol 140:320–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boronat A, Aguilar J (1981) Experimental evolution of propanediol oxidoreductase in Escherichia coli. Comparative analysis of the wild-type and mutant enzymes. Biochim Biophys Acta 672:98–107

    Article  CAS  PubMed  Google Scholar 

  • Brzuszkiewicz E, Waschkowitz T, Wiezer A, Daniel R (2012) Complete genome sequence of the B12-producing Shimwellia blattae strain DSM 4481, isolated from a cockroach. J Bacteriol 194:4436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron DC, Altaras NE, Hoffman ML, Shaw AJ (1998) Metabolic engineering of propanediol pathways. Biotechnol Prog 14:116–125

    Article  CAS  PubMed  Google Scholar 

  • Daniel R, Bobik T, Gottschalk GA (1998) Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22:553–566

    Article  CAS  PubMed  Google Scholar 

  • Hacking A, Lin E (1976) Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli. J Bacteriol 126:1166–1172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hannig G, Makrides SC (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16:54–60

    Article  CAS  PubMed  Google Scholar 

  • Heinrich D, Andreessen B, Madkour MH, Al-Ghamdi MA, Shabbaj II, Steinbüchel A (2013) From waste to plastic: synthesis of poly(3-hydroxypropionate) in Shimwellia blattae. Appl Environ Microbiol 79:3582–3589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hopper DJ, Cooper RA (1972) The purification and properties of Escherichia coli methylglyoxal synthase. Biochem J 128:321–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jain R, Yan Y (2011) Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Microb Cell Fact 10:97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kataoka M, Urano N, Shimizu S (2009) Method for producing 1-propanol. Jpn Patent Appl 2009–118806.

  • Kita K, Fukura T, Nakase KI, Okamoto K, Yanase H, Kataoka M, Shimizu S (1999) Cloning, overexpression, and mutagenesis of the Sporobolomyces salmonicolor AKU4429 gene encoding a new aldehyde reductase, which catalyzes the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate. Appl Environ Microbiol 65:5207–5211

  • Ko J, Kim I, Yoo S, Min B, Kim K, Park C (2005) Conversion of methylglyoxal to acetol by Escherichia coli aldo-keto reductases. J Bacteriol 187:5782–5789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Misra K, Banerjee AB, Ray S, Ray M (1996) Reduction of methylglyoxal in Escherichia coli K12 by an aldehyde reductase and alcohol dehydrogenase. Mol Cell Biochem 156:117–124

    Article  CAS  PubMed  Google Scholar 

  • Moralejo P, Egan SM, Hidalgo E, Aguilar J (1993) Sequencing and characterization of a gene cluster encoding the enzymes for L-rhamnose metabolism in Escherichia coli. J Bacteriol 175:5585–5594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murata K, Fukuda Y, Watanabe K, Saikusa T, Shimosaka M, Kimura A (1985) Characterization of methylglyoxal synthase in Saccharomyces cerevisiae. Biochem Biophys Res Commun 131:190–198

    Article  CAS  PubMed  Google Scholar 

  • Saadat D, Harrison DH (1998) Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues. Biochemistry 37:10074–10086

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sawada H, Takagi Y (1964) The metabolism of L-rhamnose in Escherichia coli: III. L-rhamnulose-phosphate aldolase. Biochim Biophys Acta 92:26–32

    CAS  PubMed  Google Scholar 

  • Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320

    Article  CAS  PubMed  Google Scholar 

  • Takagi Y, Sawada H (1964a) The metabolism of L-rhamnose in Escherichia coli I. L-Rhamnose isomerase. Biochim Biophys Acta 92:10–17

    CAS  PubMed  Google Scholar 

  • Takagi Y, Sawada H (1964b) The metabolism of L-rhamnose in Escherichia coli II. L-Rhamnulose kinase. Biochim Biophys Acta 92:18–25

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research, no. 23380051 (to MK), from the Japan Society for the Promotion of Science (JSPS), and by the Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiko Kataoka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urano, N., Fujii, M., Kaino, H. et al. Fermentative production of 1-propanol from sugars using wild-type and recombinant Shimwellia blattae . Appl Microbiol Biotechnol 99, 2001–2008 (2015). https://doi.org/10.1007/s00253-014-6330-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6330-2

Keywords

Navigation