Skip to main content
Log in

Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Long-term stable cell growth and production of vindoline, catharanthine, and ajmalicine of cambial meristematic cells (CMCs) from Catharanthus roseus were observed after 2 years of culture. C. roseus CMCs were treated with β-cyclodextrin (β-CD) and methyl jasmonate (MeJA) individually or in combination and were cultured both in conventional Erlenmeyer flasks (100, 250, and 500 mL) and in a 5-L stirred hybrid airlift bioreactor. CMCs of C. roseus cultured in the bioreactor showed higher yields of vindoline, catharanthine, and ajmalicine than those cultured in flasks. CMCs of C. roseus cultured in the bioreactor and treated with 10 mM β-CD and 150 μM MeJA gave the highest yields of vindoline (7.45 mg/L), catharanthine (1.76 mg/L), and ajmalicine (58.98 mg/L), concentrations that were 799, 654, and 426 % higher, respectively, than yields of CMCs cultured in 100-mL flasks without elicitors. Quantitative reverse transcription (RT)-PCR showed that β-CD and MeJA upregulated transcription levels of genes related to the biosynthesis of terpenoid indole alkaloids (TIAs). This is the first study to report that β-CD induced the generation of NO, which plays an important role in mediating the production of TIAs in C. roseus CMCs. These results suggest that β-CD and MeJA can enhance the production of TIAs in CMCs of C. roseus, and thus, CMCs of C. roseus have significant potential to be an industrial platform for production of bioactive alkaloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexey E (2004) Charged cyclodextrin derivatives and their use in plant cell and tissue culture growth media. USA Patent. US 20040106199A1

  • Almagro L, López Perez AJ, Pedreño MA (2011) New method to enhance ajmalicine production in Catharanthus roseus cell cultures based on the use of cyclodextrins. Biotechnol Lett 33:381–385

    Article  CAS  PubMed  Google Scholar 

  • Baebler Š, Hren M, Camloh M, Ravnikar M, Bohanec B, Plaper I, Ucman R, Žel J (2005) Establishment of cell suspension cultures of yew (Taxus × media rehd.) and assessment of their genomic stability. In Vitro Cell Dev Biol Plant 41:338–343

    Article  CAS  Google Scholar 

  • Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38:131–141

    Article  CAS  PubMed  Google Scholar 

  • Durante M, Caretto S, Quarta A, de Paolis A, Nisi R, Mita G (2011) β-Cyclodextrins enhance artemisinin production in Artemisia annua suspension cell cultures. Appl Microbiol Biotechnol 90:1905–1913

    Article  CAS  PubMed  Google Scholar 

  • Georgiev MI, Eibl R, Zhong JJ (2013) Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97:3787–3800

    Article  CAS  PubMed  Google Scholar 

  • Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138–142

    Article  CAS  PubMed  Google Scholar 

  • Goklany S, Loring RH, Glick J, Lee-Parsons CW (2009) Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding. Biotechnol Prog 25:1289–1296

    Article  PubMed  Google Scholar 

  • Grafi G, Ben-Meir H, Avivi Y, Moshe M, Dahan Y, Zemach A (2007) Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation. Dev Biol 306:838–846

    Article  CAS  PubMed  Google Scholar 

  • Guo ZG, Liu Y, Xing XH (2005) Enhanced catharanthine biosynthesis through regulation of cyclooxygenase in the cell suspension culture of Catharanthus roseus (L.) G. Don. Process Biochem 46:783–787

    Article  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A 93:7783–7788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu FX, Zhong JJ (2008) Jasmonic acid mediates gene transcription of ginsenoside biosynthesis in cell cultures of Panax notoginseng treated with chemically synthesized 2-hydroxyethyl jasmonate. Process Biochem 43:113–118

    Article  CAS  Google Scholar 

  • Hu XY, Neill SJ, Cai WM (2003) NO-mediated hypersensitive responses of rice suspension cultures induced by incompatible elicitor. Chin Sci Bull 48:358–363

    Article  CAS  Google Scholar 

  • Joshi JB, Elias CB, Patole MS (1996) Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Chem Eng J 62:121–141

    CAS  Google Scholar 

  • Kutchan TM (1998) Molecular genetics of plant alkaloid biosynthesis. In: Cordell GA (ed) The alkaloids: chemistry and biology, 7th edn. Academic, New York, pp 257–316

    Chapter  Google Scholar 

  • Lee EK, Jin YW, Park JH, Yoo YM, Hong SM, Amir R, Yan Z, Kwon E, Elfick A, Tomlinson S, Halbritter F, Waibel T, Yun BW, Loake GJ (2010) Cultured cambial meristematic cells as a source of plant natural products. Nat Biotechnol 28:1213–1217

    Article  CAS  PubMed  Google Scholar 

  • Lijavetzky D, Almagro L, Belchi-Navarro S, Martínez-Zapater JM, Bru R, Pedreño MA (2008) Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1:132

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu W, Chen R, Chen M, Zhang H, Peng M, Yang C, Ming X, Lan X, Liao Z (2012) Tryptophan decarboxylase plays an important role in ajmalicine biosynthesis in Rauvolfia verticillata. Planta 236:239–250

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhu J, Tang L, Wen W, Lv S, Yu R (2013) Enhancement of vindoline and vinblastine production in suspension-cultured cells of Catharanthus roseus by artemisinic acid elicitation. World J Microbiol Biotechnol 30:175–180

    Article  PubMed  Google Scholar 

  • Marsh Z, Yang T, Nopo-Olazabal L, Wu S, Ingle T, Joshee N, Medina-Bolivar F (2014) Effect of light, methyl jasmonate and cyclodextrin on production of phenolic compounds in hairy root cultures of Scutellaria lateriflora. Phytochemistry 107:50–60

    Article  CAS  PubMed  Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun. doi:10.1038/ ncomms4606

    PubMed Central  PubMed  Google Scholar 

  • Montiel G, Zarei A, Körbes AP, Memelink J (2011) The jasmonate-responsive element from the ORCA3 promoter from Catharanthus roseus is active in Arabidopsis and is controlled by the transcription factor AtMYC2. Plant Cell Physiol 52:578–587

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murata J, Roepke J, Gordon H, de Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20:524–542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen TKO, Dauwe R, Bourgaud F, Gontier E (2013) From bioreactor to entire plants: development of production systems for secondary metabolites. In: Giglioli-Guivarc’h N (ed) New light on alkaloid biosynthesis and future prospects, 8th edn. Elsevier, London, pp 210–230

    Google Scholar 

  • Noble RL (1990) The discovery of the vinca alkaloid schemotherapeutic agents against cancer. Biochem Cell Biol 68:1344–1351

    Article  CAS  PubMed  Google Scholar 

  • Park SC, Cho GH (1996) Production enhancement of benzophenanthridine alkaloids in the suspension cultures of California poppy using cyclodextrin. Korean J Biotechnol Bioeng 11:411–419

    Google Scholar 

  • Peebles CA, Sander GW, Li M, Shanks JV, San KY (2009) Five year maintenance of the inducible expression of anthranilate synthase in Catharanthus roseus hairy roots. Biotechnol Bioeng 102:1521–1525

    Article  CAS  PubMed  Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci U S A 91:5222–5226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3:387–395

    Article  CAS  PubMed  Google Scholar 

  • Salim V, de Luca V (2013) Towards complete elucidation of monoterpene indole alkaloid biosynthesis pathway: Catharanthus roseus as a pioneer system. In: Giglioli-Guivarc’h N (ed) New light on alkaloid biosynthesis and future prospects, 1st edn. Elsevier, London, pp 1–18

    Chapter  Google Scholar 

  • Sander GW (2009) Quantitative analysis of metabolic pathways in Catharanthus roseus hairy roots metabolically engineered for terpenoid indole alkaloid overproduction. PhD thesis, Iowa State University, Ames, IA

  • Sharma P, Sharma S, Yadav S, Srivastava A, Purohit I, Shrivastava N (2014) Plant derived bioactive molecules: culture vessels to bioreactors. In: Paek KY, Murthy HN, Zhong JJ (eds) Production of biomass and bioactive compounds using bioreactor technology, 3rd edn. Springer, Dordrecht, pp 47–53

    Google Scholar 

  • Simkin AJ, Miettinen K, Claudel P, Burlat V, Guirimand G, Courdavault V, Papon N, Meyer S, Godet S, St-Pierre B, Giglioli-Guivarc’h N, Fischer MJ, Memelink J, Clastre M (2013) Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85:36–43

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre B, Vazquez-Flota FA, de Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thorpe TA (2007) History of plant tissue culture. Mol Biotechnol 37:169–180

    Article  CAS  PubMed  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Article  Google Scholar 

  • van Uden W, Oeij H, Woerdenbag HJ, Pras N (1993) Glucosylation of cyclodextrin- complexed podophyllotoxin by cell cultures of Linum flavum L. Plant Cell Tiss Org 34:169–175

    Article  Google Scholar 

  • Vazquez-Flota F, de Carolis E, Alarco AM, de Luca V (1997) Molecular cloning and characterization of deacetoxyvindoline 4-hydroxylase, a 2-oxoglutarate dependent dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don. Plant Mol Biol 34:935–948

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Flota F, Hernández-Domínguez E, de Lourdes Miranda-Ham M, Monforte-González M (2009) A differential response to chemical elicitors in Catharanthus roseus in vitro cultures. Biotechnol Lett 31:591–595

    Article  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woerdenbag HJ, van Uden W, Frijlink HW, Lerk CF, Pras N, Malingré TM (1990) Increased podophyllotoxin production in Podophyllum hexandrum cell suspension cultures after feeding coniferyl alcohol as a β-cyclodextrin complex. Plant Cell Rep 9:97–100

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Dong J (2005) Elicitor-induced nitric oxide burst is essential for triggering catharanthine synthesis in Catharanthus roseus suspension cells. Appl Microbiol Biotechnol 67:40–44

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Liu Y, Zu YG (2008) Ion-pair extraction-spectrophotometric determination of total alkaloids in Catharanthus roseus with bromophenol blue as color reagent. Phys Test Chem Anal B: Chem Anal 44:427–432

    CAS  Google Scholar 

  • Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zheng LP, Wang JW (2012) Nitric oxide elicitation for secondary metabolite production in cultured plant cells. Appl Microbiol Biotechnol 93:455–466

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457

    Article  CAS  Google Scholar 

  • Zhong JJ (2010) Recent advances in bioreactor engineering. Korean J Chem Eng 27:1035–1041

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was financially supported by National Natural Sciences Foundation of China (No. 81073004, 81102771, and 81274045), Pearl River Scientific and Technological New Star Program of Guangzhou (No. 2014 J2200004), the Natural Science Foundation of Guangdong Province (No. 2014A030313385), and Science and Technology Specific Project of Guangzhou (No.201300000138).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Zhu, Rongmin Yu or Xuesong Huang.

Additional information

Pengfei Zhou and Jiazeng Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Yang, J., Zhu, J. et al. Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Appl Microbiol Biotechnol 99, 7035–7045 (2015). https://doi.org/10.1007/s00253-015-6651-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6651-9

Keywords

Navigation