Skip to main content

Advertisement

Log in

Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afolabi PR, Mohammed F, Amaratunga K, Majekodunmi O, Dales SL, Gill R, Thompson D, Cooper JB, Wood SP, Goodwin PM, Anthony C (2001) Site-directed mutagenesis and X-ray crystallography of the PQQ-containing quinoprotein methanol dehydrogenase and its electron acceptor, cytochrome c(L). Biochemistry 40(33):9799–9809

    Article  CAS  PubMed  Google Scholar 

  • Ando M, Yoshimoto T, Ogushi S, Rikitake K, Shibata S, Tsuru D (1979) Formaldehyde dehydrogenase from Pseudomonas putida. Purification and some properties. J Biochem 85(5):1165–1172

    CAS  PubMed  Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic Press, London; New York

  • Anthony C, Williams P (2003) The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 1647(1–2):18–23

    Article  CAS  PubMed  Google Scholar 

  • Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L, Frank J (1997) Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus. Eur J Biochem 244(2):426–433

    Article  CAS  PubMed  Google Scholar 

  • Arfman N, Van Beeumen J, De Vries GE, Harder W, Dijkhuizen L (1991) Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp. J Biol Chem 266(6):3955–3960

    CAS  PubMed  Google Scholar 

  • Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ (2008) Ethanol catabolism in Corynebacterium glutamicum. J Mol Microbiol Biotechnol 15(4):222–233. doi:10.1159/000107370

    Article  CAS  PubMed  Google Scholar 

  • Arndt A, Eikmanns BJ (2007) The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol 189(20):7408–7416. doi:10.1128/JB.00791-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brautaset T, Heggeset TMB, Krog A, Quax WJ, Sibbald MJJB, Vorholt J, Müller J, Kiefer P, Potthoff E, Wendisch VF, Lessmeier L, Heux S, Portais JC (2013) Novel methanol dehydrogenase enzymes from Bacillus. WO/2013/110797, 25. Jan. 2013

  • Brautaset T, Jakobsen MO, Flickinger MC, Valla S, Ellingsen TE (2004) Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. J Bacteriol 186(5):1229–1238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buschke N, Becker J, Schafer R, Kiefer P, Biedendieck R, Wittmann C (2013) Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 8(5):557–570. doi:10.1002/biot.201200367

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13(10):2603–2622. doi:10.1111/j.1462-2920.2011.02464.x

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L, Gomelsky L, Vorholt JA, Gomelsky M, Tsygankov YD, Lidstrom ME (2000) Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiology 146(Pt 1):233–238

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499. doi:10.1146/annurev.micro.091208.073600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cox JM, Day DJ, Anthony C (1992) The interaction of methanol dehydrogenase and its electron acceptor, cytochrome c L in methylotrophic bacteria. Biochim Biophys Acta 1119(1):97–106

    Article  CAS  PubMed  Google Scholar 

  • Eggeling L, Bott M (2015) A giant market and a powerful metabolism: l-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99(8):3387–3394. doi:10.1007/s00253-015-6508-2

    Article  CAS  PubMed  Google Scholar 

  • Gutheil WG, Holmquist B, Vallee BL (1992) Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry 31(2):475–481

    Article  CAS  PubMed  Google Scholar 

  • Gutheil WG, Kasimoglu E, Nicholson PC (1997) Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza. Biochem Biophys Res Commun 238(3):693–696

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580

    Article  CAS  PubMed  Google Scholar 

  • Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T (2012) Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of l-lysine and l-glutamate from methanol. Appl Environ Microbiol 78(15):5170–5181. doi:10.1128/AEM.00703-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heider SAE, Wendisch VF (2015) Engineering microbial cell factories: metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products. Biotechnol J 10:1170–1184

  • Hektor HJ, Kloosterman H, Dijkhuizen L (2000) Nicotinoprotein methanol dehydrogenase enzymes in Gram-positive methylotrophic bacteria. J Mol Catal B Enzym 8(1–3):103–109. doi:10.1016/s1381-1177(99)00073-9

    Article  CAS  Google Scholar 

  • Hektor HJ, Kloosterman H, Dijkhuizen L (2002) Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus. J Biol Chem 277(49):46966–46973. doi:10.1074/jbc.M207547200

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen OM, Benichou A, Flickinger MC, Valla S, Ellingsen TE, Brautaset T (2006) Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus. J Bacteriol 188(8):3063–3072. doi:10.1128/JB.188.8.3063-3072.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kallen RG, Jencks WP (1966) The mechanism of the condensation of formaldehyde with tetrahydrofolic acid. J Biol Chem 241(24):5851–5863

    CAS  PubMed  Google Scholar 

  • Kato N, Higuchi T, Sakazawa C, Nishizawa T, Tani Y, Yamada H (1982) Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol-utilizing yeast, Candida boidinii (Kloeckera sp.) no. 2201. Biochim Biophys Acta 715(2):143–150

    Article  CAS  PubMed  Google Scholar 

  • Kato N, Yurimoto H, Thauer RK (2006) The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70(1):10–21. doi:10.1271/bbb.70.10

    Article  CAS  PubMed  Google Scholar 

  • Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175(17):5595–5603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kiefer P, Nicolas C, Letisse F, Portais JC (2007) Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry. Anal Biochem 360(2):182–188. doi:10.1016/j.ab.2006.06.032

    Article  CAS  PubMed  Google Scholar 

  • Kind S, Jeong WK, Schroder H, Wittmann C (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12(4):341–351. doi:10.1016/j.ymben.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  • Koopman FW, de Winde JH, Ruijssenaars HJ (2009) C1 compounds as auxiliary substrate for engineered Pseudomonas putida S12. Appl Microbiol Biotechnol 83(4):705–713. doi:10.1007/s00253-009-1922-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krog A, Heggeset TM, Muller JE, Kupper CE, Schneider O, Vorholt JA, Ellingsen TE, Brautaset T (2013) Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PLoS One 8(3):e59188 doi:10.1371/journal.pone.0059188

  • Lessmeier L, Hoefener M, Wendisch VF (2013) Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase. Microbiology 159(Pt 12):2651–2662. doi:10.1099/mic.0.072413-0

    Article  CAS  PubMed  Google Scholar 

  • Leßmeier L, Zahoor ul Hassan A, Lindner S, Wendisch VF (2015) Metabolic engineering of Corynebacterium glutamicum for alternative carbon source utilization. In: Burkovski A (ed) Corynebacterium glutamicum: from systems biology to biotechnological applications. Caister Academic Press

  • Luers GH, Advani R, Wenzel T, Subramani S (1998) The Pichia pastoris dihydroxyacetone kinase is a PTS1-containing, but cytosolic, protein that is essential for growth on methanol. Yeast 14(8):759–771

    Article  CAS  PubMed  Google Scholar 

  • Maden BE (2000) Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem J 350(Pt 3):609–629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millard P, Letisse F, Sokol S, Portais JC (2012) IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28(9):1294–1296. doi:10.1093/bioinformatics/bts127

    Article  CAS  PubMed  Google Scholar 

  • Millard P, Massou S, Wittmann C, Portais JC, Letisse F (2014) Sampling of intracellular metabolites for stationary and non-stationary 13C metabolic flux analysis in Escherichia coli. Anal Biochem 465:38–49. doi:10.1016/j.ab.2014.07.026

    Article  CAS  PubMed  Google Scholar 

  • Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71(9):2130–2135. doi:10.1271/bbb.60699

    Article  CAS  PubMed  Google Scholar 

  • Misset-Smits M, van Ophem PW, Sakuda S, Duine JA (1997) Mycothiol, 1-O-(2′-[N-acetyl-l-cysteinyl]amido-2′-deoxy-alpha-d-glucopyranosyl)-d-myo-inositol, is the factor of NAD/factor-dependent formaldehyde dehydrogenase. FEBS Lett 409(2):221–222 doi:S0014-5793(97)00510–3

  • Mitsui R, Kusano Y, Yurimoto H, Sakai Y, Kato N, Tanaka M (2003) Formaldehyde fixation contributes to detoxification for growth of a nonmethylotroph, Burkholderia cepacia TM1, on vanillic acid. Appl Environ Microbiol 69(10):6128–6132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Müller JE, Heggeset TM, Wendisch VF, Vorholt JA, Brautaset T (2015a) Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol. Appl Microbiol Biotechnol 99(2):535–551. doi:10.1007/s00253-014-6224-3

    Article  PubMed  Google Scholar 

  • Müller JE, Litsanov B, Bortfeld-Miller M, Trachsel C, Grossmann J, Brautaset T, Vorholt JA (2014) Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3. Proteomics 14(6):725–737. doi:10.1002/pmic.201300515

    Article  PubMed  Google Scholar 

  • Müller JE, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax WJ, Wendisch VF, Brautaset T, Portais JC, Vorholt JA (2015b) Engineering Escherichia coli for methanol conversion. Metab Eng 28:190–201. doi:10.1016/j.ymben.2014.12.008

    Article  PubMed  Google Scholar 

  • Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF (2015) Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microb Biotechnol 8(2):342–350. doi:10.1111/1751-7915.12257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55(3):416–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Budiarto T, Hamilton CJ, Claiborne A, Helmann JD, Fahey RC (2009) Bacillithiol is an antioxidant thiol produced in bacilli. Nat Chem Biol 5(9):625–627. doi:10.1038/nchembio.189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicolas C, Becker J, Sanchou L, Letisse F, Wittmann C, Portais J-C, Massou S (2008) Measurement of isotopic enrichments in 13 C-labelled molecules by 1D selective zero-quantum filtered TOCSY NMR experiments. Comptes Rendus Chimie 11(4):480–485

    Article  CAS  Google Scholar 

  • Ochsner AM, Muller JE, Mora CA, Vorholt JA (2014) In vitro activation of NAD-dependent alcohol dehydrogenases by Nudix hydrolases is more widespread than assumed. FEBS Lett 588(17):2993–2999. doi:10.1016/j.febslet.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  • Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA (2015) Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl Microbiol Biotechnol 99(2):517–534. doi:10.1007/s00253-014-6240-3

    Article  CAS  PubMed  Google Scholar 

  • Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed Engl 44(18):2636–2639. doi:10.1002/anie.200462121

    Article  CAS  PubMed  Google Scholar 

  • Olah GA, Prakash GK, Goeppert A, Czaun M, Mathew T (2013) Self-sufficient and exclusive oxygenation of methane and its source materials with oxygen to methanol via metgas using oxidative bi-reforming. J Am Chem Soc 135(27):10030–10031. doi:10.1021/ja405439c

    Article  CAS  PubMed  Google Scholar 

  • Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF (2014) Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production. J Biotechnol 192(Pt B):346–354 doi:10.1016/j.jbiotec.2014.01.023

  • Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3(2):295–300

    CAS  PubMed  Google Scholar 

  • Pluschkell SB, Flickinger MC (2002) Dissimilation of [13C]methanol by continuous cultures of Bacillus methanolicus MGA3 at 50 °C studied by 13C NMR and isotope-ratio mass spectrometry. Microbiology 148(Pt 10):3223–3233

    Article  CAS  PubMed  Google Scholar 

  • Pomper BK, Vorholt JA, Chistoserdova L, Lidstrom ME, Thauer RK (1999) A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem 261(2):475–480

    Article  CAS  PubMed  Google Scholar 

  • Quayle JR (1980) Microbial assimilation of C1 compounds. The thirteenth CIBA medal lecture. Biochem Soc Trans 8(1):1–10

  • Reizer J, Reizer A, Saier Jr MH (1997) Is the ribulose monophosphate pathway widely distributed in bacteria? Microbiology 143(Pt 8):2519–2520

    Article  CAS  PubMed  Google Scholar 

  • Roggenkamp R, Sahm H, Hinkelmann W, Wagner F (1975) Alcohol oxidase and catalase in peroxisomes of methanol-grown Candida boidinii. Eur J Biochem 59(1):231–236

    Article  CAS  PubMed  Google Scholar 

  • Sakai Y, Mitsui R, Katayama Y, Yanase H, Kato N (1999) Organization of the genes involved in the ribulose monophosphate pathway in an obligate methylotrophic bacterium, Methylomonas aminofaciens 77a. FEMS Microbiol Lett 176(1):125–130

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratoy Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schneider J, Wendisch VF (2011) Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 91(1):17–30. doi:10.1007/s00253-011-3252-0

    Article  CAS  PubMed  Google Scholar 

  • Seibold G, Dempf S, Schreiner J, Eikmanns BJ (2007) Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology 153(Pt 4):1275–1285

    Article  CAS  PubMed  Google Scholar 

  • Shen YQ, Bonnot F, Imsand EM, RoseFigura JM, Sjolander K, Klinman JP (2012) Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry 51(11):2265–2275. doi:10.1021/bi201763d

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smejkalova H, Erb TJ, Fuchs G (2010) Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS One 5(10). doi:10.1371/journal.pone.0013001

  • Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71(10):5920–5928. doi:10.1128/AEM.71.10.5920-5928.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stolzenberger J, Lindner SN, Wendisch VF (2013) The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology 159(Pt 8):1770–1781. doi:10.1099/mic.0.067314-0

    Article  CAS  PubMed  Google Scholar 

  • Strom T, Ferenci T, Quayle JR (1974) The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane. Biochem J 144(3):465–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82(1):115–121. doi:10.1007/s00253-008-1751-4

    Article  CAS  PubMed  Google Scholar 

  • Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J (2002) Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45(5):362–367. doi:10.1007/s00284-002-3728-3

    Article  CAS  PubMed  Google Scholar 

  • Tsuru D, Oda N, Matsuo Y, Ishikawa S, Ito K, Yoshimoto T (1997) Glutathione-independent formaldehyde dehydrogenase from Pseudomons putida: survey of functional groups with special regard for cysteine residues. Biosci Biotechnol Biochem 61(8):1354–1357. doi:10.1271/bbb.61.1354

    Article  CAS  PubMed  Google Scholar 

  • Vogt RN, Steenkamp DJ, Zheng R, Blanchard JS (2003) The metabolism of nitrosothiols in the mycobacteria: identification and characterization of S-nitrosomycothiol reductase. Biochem J 374(Pt 3):657–666. doi:10.1042/BJ20030642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vorholt JA (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178(4):239–249. doi:10.1007/s00203-002-0450-2

    Article  CAS  PubMed  Google Scholar 

  • Wagner FW, Burger AR, Vallee BL (1983) Kinetic properties of human liver alcohol dehydrogenase: oxidation of alcohols by class I isoenzymes. Biochemistry 22(8):1857–1863

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58. doi:10.1016/j.copbio.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  • Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET (2015) Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr Opin Biotechnol 33:165–175. doi:10.1016/j.copbio.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  • Williams P, Coates L, Mohammed F, Gill R, Erskine P, Bourgeois D, Wood SP, Anthony C, Cooper JB (2006) The 1.6A X-ray structure of the unusual c-type cytochrome, cytochrome cL, from the methylotrophic bacterium Methylobacterium extorquens. J Mol Biol 357(1):151–162. doi:10.1016/j.jmb.2005.12.055

    Article  CAS  PubMed  Google Scholar 

  • Witthoff S, Eggeling L, Bott M, Polen T (2012) Corynebacterium glutamicum harbours a molybdenum cofactor-dependent formate dehydrogenase which alleviates growth inhibition in the presence of formate. Microbiology 158(Pt 9):2428–2439. doi:10.1099/mic.0.059196-0

    Article  CAS  PubMed  Google Scholar 

  • Witthoff S, Muhlroth A, Marienhagen J, Bott M (2013) C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide. Appl Environ Microbiol 79(22):6974–6983. doi:10.1128/AEM.02705-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Witthoff S, Schmitz K, Niedenfuhr S, Noh K, Noack S, Bott M, Marienhagen J (2015) Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol 81(6):2215–2225. doi:10.1128/AEM.03110-14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang M, Nightingale PD, Beale R, Liss PS, Blomquist B, Fairall C (2013) Atmospheric deposition of methanol over the atlantic ocean. Proc Natl Acad Sci U S A 110(50):20034–20039. doi:10.1073/pnas.1317840110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yasueda H, Kawahara Y, Sugimoto S (1999) Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 181(23):7154–7160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yurimoto H, Kato N, Sakai Y (2005) Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem Rec 5(6):367–375. doi:10.1002/tcr.20056

    Article  CAS  PubMed  Google Scholar 

  • Zahoor A, Lindner SN, Wendisch VF (2012) Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J 3:e201210004 doi:10.5936/csbj.201210004

  • Zhu L, Li Y, Cai Z (2015) Development of a stress-induced mutagenesis module for autonomous adaptive evolution of Escherichia coli to improve its stress tolerance. Biotechnol Biofuels 8:93. doi:10.1186/s13068-015-0276-1

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Ethical statement and acknowledgments

This work was supported by SynMet, a 09-EuroSYNBIO-FP-023 project, funded in part by DFG through grant WE 2320/2-1, and by EU-FP7 project PROMYSE “Products from Methanol by Synthetic Cell Factories.” This article does not contain any studies with human participants or animals performed by any of the authors. LL declares that he has no conflict of interest. JP declares that he has no conflict of interest. MC declares that he has no conflict of interest. SH declares that she has no conflict of interest. JCP declares that he has no conflict of interest. VFW declares that he has no conflict of interest. The authors gratefully acknowledge fruitful discussions with the groups of Julia Vorholt, Wim Quax, and Trygve Brautaset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker F. Wendisch.

Additional information

Lennart Leßmeier and Johannes Pfeifenschneider contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leßmeier, L., Pfeifenschneider, J., Carnicer, M. et al. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol 99, 10163–10176 (2015). https://doi.org/10.1007/s00253-015-6906-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6906-5

Keywords

Navigation