Skip to main content

Advertisement

Log in

Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Klebsiella oxytoca GS-4-08 is capable of azo dye reduction, but its quinone respiration and Fe(III) reduction abilities have not been reported so far. In this study, the abilities of this strain were reported in detail for the first time. As the biotic reduction of Fe(III) plays an important role in the biogeochemical cycles, two amorphous Fe(III) oxides were tested as the sole electron acceptor during the anaerobic respiration of strain GS-4-08. For the reduction of goethite and hematite, the biogenic Fe(II) concentrations reached 0.06 and 0.15 mM, respectively. Humic acid analog anthraquinone-2-disulfonate (AQS) was found to serve as an electron shuttle to increase the reduction of both methyl orange (MO) and amorphous Fe(III) oxides, and improve the dye tolerance of the strain. However, the formation of Fe(II) was not accelerated by biologically reduced AQS (B-AH2QS) because of the high bioavailability of soluble Fe(III). For the K. oxytoca strain, high soluble Fe(III) concentrations (above 1 mM) limit its growth and decolorization ability, while lower soluble Fe(III) concentrations produce an electron competition with MO initially, and then stimulate the decolorization after the electron couples of Fe(III)/Fe(II) are formed. With the ability to respire both soluble Fe(III) and insoluble Fe(III) oxides, this formerly known azo-reducer may be used as a promising model organism for the study of the interaction of these potentially competing processes in contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson RJ, Posner AM, Quirk JP (1967) Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. J Phys Chem 71:550–558

    Article  CAS  Google Scholar 

  • Brown AR, Wincott PL, LaVerne JA, Small JS, Vaughan DJ, Pimblott SM, Lloyd JR (2014) The impact of gamma radiation on the bioavailability of Fe(III) minerals for microbial respiration. Environ Sci Technol 48:10672–10680

    Article  CAS  PubMed  Google Scholar 

  • Brutinel ED, Gralnick JA (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48

    Article  PubMed  Google Scholar 

  • Chen X, Sun G, Xu M (2011) Role of iron in azoreduction by resting cells of Shewanella decolorationis S12. J Appl Microbiol 110:580–586

    Article  CAS  PubMed  Google Scholar 

  • dos Santos AB, Cervantes FJ, van Lier JB (2004) Azo dye reduction by thermophilic anaerobic granular sludge, and the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) on the reductive biochemical transformation. Appl Microbiol Biotechnol 64:62–69

    Article  PubMed  Google Scholar 

  • dos Santos AB, Traverse J, Cervantes FJ, van Lier JB (2005) Enhancing the electron transfer capacity and subsequent color removal in bioreactors by applying thermophilic anaerobic treatment and redox mediators. Biotechnol Bioeng 89:42–52

    Article  PubMed  Google Scholar 

  • Etique M, Jorand FPA, Zegeye A, Gregoire B, Despas C, Ruby C (2014) Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis). Environ Sci Technol 48:3742–3751

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Chen X, Guo J, Xu Z, Xu M, Sun G (2007) Effects of electron donors and acceptors on anaerobic reduction of azo dyes by Shewanella decolorationis S12. Appl Microbiol Biotechnol 74:230–238

    Article  CAS  PubMed  Google Scholar 

  • Hong YG, Wu P, Li WR, Gu JG, Duan SS (2012) Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp strain 3C(3). Appl Microbiol Biotechnol 93:2661–2668

    Article  CAS  PubMed  Google Scholar 

  • Keck A, Klein J, Kudlich M, Stolz A, Knackmuss HJ, Mattes R (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl Environ Microbiol 63:3684–3690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalid A, Arshad M, Crowley DE (2009) Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater. Water Res 43:1110–1116

    Article  CAS  PubMed  Google Scholar 

  • Kudlich M, Keck A, Klein J, Stolz A (1997) Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl Environ Microbiol 63:3691–3694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon MJ, Finneran KT (2006) Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by extracellular electron shuttling compounds. Appl Environ Microbiol 72:5933–5941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GF, Zhou JT, Wang J, Wang XJ, Jin RF, Lv H (2011) Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Appl Microbiol Biotechnol 91:417–424

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Zhou JT, Wang J, Si WL, Teng H, Liu GF (2010) Enhanced biodecolorization of azo dyes by anthraquinone-2-sulfonate immobilized covalently in polyurethane foam. Bioresour Technol 101:7185–7188

    Article  CAS  Google Scholar 

  • Mahadevan R, Bond DR, Butler JE, Esteve-Nunez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR (2006) Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72:1558–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzella MP, Reguera G, Kashefi K (2013) Extracellular electron transfer to Fe(III) oxides by the hyperthermophilic archaeon Geoglobus ahangari via a direct contact mechanism. Appl Environ Microbiol 79:4694–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan WO (1952) Hydrous and hydrated ferric oxides. In problems of Clay and Leterites Genesis. Am Inst Mining Met Engs. New York, pp 232–233

  • Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68:2294–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–7

    Article  CAS  PubMed  Google Scholar 

  • Ona-Nguema G, Abdelmoula M, Jorand F, Benali O, Gehin A, Block JC, Genin JMR (2002) Iron(II, III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction. Environ Sci Technol 36:16–20

    Article  CAS  PubMed  Google Scholar 

  • Pantke C, Obst M, Benzerara K, Morin G, Ona-Nguema G, Dippon U, Kappler A (2012) Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp strain BoFeN1. Environ Sci Technol 46:1439–1446

    Article  CAS  PubMed  Google Scholar 

  • Pavlostathis SG, Miller TL, Wolin MJ (1988) Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus. Appl Environ Microbiol 54:2655–2659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piepenbrock A, Schroder C, Kappler A (2014) Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals. Environ Sci Technol 48:1656–1664

    Article  CAS  PubMed  Google Scholar 

  • Rau J, Knackmuss HJ, Stolz A (2002) Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ Sci Technol 36:1497–1504

    Article  CAS  PubMed  Google Scholar 

  • Royer RA, Burgos WD, Fisher AS, Unz RF, Dempsey BA (2002) Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation. Environ Sci Technol 36:1939–1946

    Article  CAS  PubMed  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    Article  CAS  Google Scholar 

  • Sarayu K, Sandhya S (2012) Current technologies for biological treatment of textile wastewater—a review. Appl Biochem Biotech 167:645–661

    Article  CAS  Google Scholar 

  • Smith JA, Tremblay PL, Shrestha PM, Snoeyenbos-West OL, Franks AE, Nevin KP, Lovley DR (2014) Going wireless: Fe(III) oxide reduction without pili by Geobacter sulfurreducens strain JS-1. Appl Environ Microbiol 80:4331–4340

    Article  PubMed  PubMed Central  Google Scholar 

  • Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34:181–186

    Article  CAS  PubMed  Google Scholar 

  • Van der Zee FR, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27:256–277

    Article  PubMed  Google Scholar 

  • von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Article  Google Scholar 

  • Xu MY, Guo J, Kong XY, Chen XJ, Sun GP (2007) Fe(III)-enhanced azo reduction by Shewanella decolorationis S12. Appl Microbiol Biotechnol 74:1342–1349

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Li WW, Lam MHW, Yu HQ (2011) Adsorption and decolorization kinetics of methyl orange by anaerobic sludge. Appl Microbiol Biotechnol 90:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Li WW, Lam MHW, Yu HQ, Wu C (2012) Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production. Appl Microbiol Biotechnol 95:255–262

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Zhang XY, Tang QW, Li J, Xie T, Liu C, Cao MY, Zhang RC, Wang S, Hu JM, Qiao WC, Li WW, Ruan HH (2015a) Decolorization characteristics of a newly isolated salt-tolerant Bacillus sp. strain and its application for azo dye-containing wastewater in immobilized form. Appl Microbiol Biotechnol 99:9277–9287

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Zhang XY, Wang S, Tang QW, Xie T, Lei NY, Chen YL, Qiao WC, Li WW, Lam MHW (2015b) Microbial community structure associated with treatment of azo dye in a start-up anaerobic sequenced batch reactor. J Taiwan Inst Chem Eng 54:118–124

    Article  CAS  Google Scholar 

  • Yu L, Zhang XY, Xie T, Hu JM, Wang S, Li WW (2015c) Intracellular azo decolorization is coupled with aerobic respiration by a Klebsiella oxytoca strain. Appl Microbiol Biotechnol 99:2431–2439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 51308300), Natural Science Foundation of Jiangsu Province (CN) (BK20151518), and partially funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Open Project of Jiangsu Key Laboratory of Biomass Energy and Materials (JSBEM201506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Lei Yu and Shi Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Wang, S., Tang, Qw. et al. Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate. Appl Microbiol Biotechnol 100, 4617–4625 (2016). https://doi.org/10.1007/s00253-016-7281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7281-6

Keywords

Navigation