Skip to main content
Log in

Comparison of catalytic properties of multiple β-glucosidases of Trichoderma reesei

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ten putative Trichoderma reesei β-glucosidase (BGL) isozymes were heterologously expressed in Escherichia coli and Aspergillus oryzae and purified to homogeneity. Catalytic properties of nine enzymes which showed hydrolytic activity on cellobiose and p-nitrophenyl-β-D-glucopyranoside (pNPG) were investigated. Three BGLs, encoded by the genes cel3A, cel3B, and cel3E, contained a predicted signal peptide, showed higher hydrolytic activity on cello-oligosaccharides than on pNPG, and preferred longer oligosaccharides. Another three putative extracellular BGLs, Cel3B, Cel3F, and Cel3G, and two intracellular enzymes, Cel3C and Cel3D, exhibited preference for pNPG. Intracellular Cel1A showed the highest affinity for cellobiose as a typical cellobiase. Four BGLs, Cel3A, Cel3B, Cel3E, Cel1A, that showed high activity against cello-oligosaccharides were capable of catalyzing transglycosylation reactions from cellobiose, leading to formation of cellotriose and isomeric glucobioses. While Cel3A, Cel3B, and Cel3E synthesized mainly gentiobiose, glycosyl transfer reactions of Cel1A led mainly to sophorose and laminaribiose. Conversion of cellobiose to sophorose by Cel1A reached about 3.6 and 10 % at 1 and 10 % cellobiose concentration, respectively. The formation and persistence of individual cellobiose isomers in incubation mixtures of four BGLs (Cel3A, Cel3B, Cel3E, and Cel1A) with cellobiose correlated well with the k cat values for isomeric glucobioses. Cel1A also showed the lowest sensitivity to inhibition by glucose. Based on all studied catalytic properties, Cel1A appears to be unambiguously the best candidate for site-directed mutations or directed evolution toward improvement of activity, thermostability, and, eventually, efficiency of sophorose synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro S, Pedersoli WR, Cristina A, Antoniêto C, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM, Rossi A, Brown NA, Goldman GH, Faça VM, Persinoti GF, Silva RN (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels 7:41. doi:10.1186/1754-6834-7-41

    Article  Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997

    Article  PubMed  Google Scholar 

  • Fowler T, Brown RD Jr (1992) The bgl1 gene encoding extracellular β-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Mol Microbiol 6:3225–3235

    Article  CAS  PubMed  Google Scholar 

  • Gomi K, Iimura Y, Hara S (1987) Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agric Biol Chem 51:2549–2555

    Article  CAS  Google Scholar 

  • Gomi K, Akeno T, Minetoki T, Ozeki K, Kumagai C, Okazaki N, Iimura Y (2000) Molecular cloning and characterization of a transcriptional activator gene, amyR, involved in the amylolytic gene expression in Aspergillus oryzae. Biosci Biotechnol Biochem 64:816–827

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Factories 11:134–160

    Article  Google Scholar 

  • Kovács K, Szakacs G, Zacchi G (2009) Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Biores Technol 100:1350–1357

    Article  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with folin phenol reagent. Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mach RL, Seiboth B, Myasnikov A, Gonzalez R, Strauss J, Harkki AM, Kubicek CP (1995) The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible β-glucosidase involved in cellulase induction by sophorose. Mol Microbiol 16:687–697

    Article  CAS  PubMed  Google Scholar 

  • Mandels M, Parrish FW, Reese ET (1962) Sophorose as an inducer of cellulase in Trichoderma viride. J Bacteriol 83:400–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandels M, Reese ET (1960) Induction of cellulase in fungi by cellobiose. J Bacteriol 79:816–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatani Y, Lamont IL, Cutfield JF (2010) Discovery and characterization of a distinctive exo-1, 3/1, 4-β-glucanase from the marine bacterium pseudoalteromona ssp. Strain BB1. Appl Environ Microbiol 76:6760–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisizawa T, Suzuki H, Nisizawa K (1971) “De novo” synthesis of cellulase induced by sophorose in Trichoderma viride cells. Biochem 70:387–393

    CAS  Google Scholar 

  • Reese ET (1976) History of the cellulase program at the U.S. army natick development center. Biotechnol Bioeng Symp 6:9–20

    CAS  PubMed  Google Scholar 

  • Saloheimo M, Kuja-Panula J, Ylösmäki E, Ward M, Penttilä M (2002) Enzymatic properties and intracellular localization of the novel Trichoderma reesei β-glucosidase BGLII (Cel1A). Appl Environ Microbiol 68:4546–4553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shida Y, Yamaguchi K, Nitta M, Nakamura A, Takahashi M, Kidokoro S, Mori K, Tashiro K, Kuhara S, Matsuzawa T, Yaoi K, Sakamoto Y, Tanaka N, Mirokawa Y, Ogasawara W (2015) The impact of a single mutation of bgl2 on cellulose induction in a Trichoderma reesei mutant. Biotechnol Biofuels 8:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Sternberg D, Mandels GR (1979) Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol 139:761–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA (1998) Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans 26:173–178

    Article  CAS  PubMed  Google Scholar 

  • Tiwari P, Misra BN (2013) Sangwan NS (2013) β-glucosidases from the fungus Trichoderma: an efficient cellulase machinery in biotechnological applications. Biomed Res Int 203735. doi:10.1155/2013/203735

  • Vaheri MP, Leisola M, Kauppinen V (1979a) Transglycosylation products of cellulase system of Trichoderma reesei. Biotechnol Lett 1:41–46

    Article  CAS  Google Scholar 

  • Vaheri MP, Vaheri MEO, Kauppine VS (1979b) Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol. Appl Microbiol Biotechnol 8:73–80

    Article  CAS  Google Scholar 

  • Xu J, Zhao G, Kou Y, Zhang W, Zhou Q, Chen G, Liu W (2014) Intracellular β-glucosidases CEL1a and CEL1b are essential for cellulase induction on lactose in Trichoderma reesei. Eukaryotic Cell 13:1001–1013

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Xu J, Kou Y, Lv X, Zhang X, Zhao G, Zhang W, Chen G, Liu W (2012) Differential involvement of β-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot Cell 11:1371–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Kou Y, Xu J, Cao Y, Zhao G, Shao J, Wang H, Wang Z, Bao X, Chen G, Liu W (2013) Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J Biol Chem. doi:10.1074/jbc.M113.505826

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichi Nozaki.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by Grant-in-Aid for the Global COE Program by the Ministry of Education, Culture, Sports, Science and Technology of Japan and was also sponsored by New Energy and Industrial Technology Development Organization (NEDO).

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Sato, N., Biely, P. et al. Comparison of catalytic properties of multiple β-glucosidases of Trichoderma reesei . Appl Microbiol Biotechnol 100, 4959–4968 (2016). https://doi.org/10.1007/s00253-016-7342-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7342-x

Keywords

Navigation