Skip to main content
Log in

Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Complete hydrolysis of κ-carrageenan produces two sugars, D-galactose and 3,6-anhydro-D-galactose (D-AnG). At present, however, we do not know how carrageenan-degrading microorganisms metabolize D-AnG. In this study, we investigated the metabolic pathway of D-AnG degradation by comparative genomic analysis of Cellulophaga lytica LIM-21, Pseudoalteromonas atlantica T6c, and Epulopiscium sp. N.t. morphotype B, which represent the classes Flavobacteria, Gammaproteobacteria, and Clostridia, respectively. In this bioinformatic analysis, we found candidate common genes that were believed to be involved in D-AnG metabolism. We then experimentally confirmed the enzymatic function of each gene product in the D-AnG cluster. In all three microorganisms, D-AnG metabolizing genes were clustered and organized in operon-like arrangements, which we named as the dan operon (3,6-d-anhydro-galactose). Combining bioinformatic analysis and experimental data, we showed that D-AnG is metabolized to pyruvate and D-glyceraldehyde-3-phosphate via four enzyme-catalyzed reactions in the following route: 3,6-anhydro-D-galactose → 3,6-anhydro-D-galactonate → 2-keto-3-deoxy-D-galactonate (D-KDGal) → 2-keto-3-deoxy-6-phospho-D-galactonate → pyruvate + D-glyceraldehyde-3-phosphate. The pathway of D-AnG degradation is composed of two parts: transformation of D-AnG to D-KDGal using two D-AnG specific enzymes and breakdown of D-KDGal to two glycolysis intermediates using two DeLey–Doudoroff pathway enzymes. To our knowledge, this is the first report on the metabolic pathway of D-AnG degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andberg M, Maaheimo H, Boer H, Penttilä M, Koivula A, Richard P (2012) Characterization of a novel Agrobacterium tumefaciens galactarolactone cycloisomerase enzyme for direct conversion of D-galactarolactone to 3-deoxy-2-keto-L-threo-hexarate. J Biol Chem 287:17662–17671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babbitt PC, Mrachko GT, Hasson MS, Huisman GW, Kolter R, Ringe D, Petsko GA, Kenyon GL, Gerlt JA (1995) A functionally diverse enzyme superfamily that abstracts the alpha protons of carboxylic acids. Science 267:1159–1161

    Article  CAS  PubMed  Google Scholar 

  • Bae J, Kim SM, Lee SB (2015) Identification and characterization of 2-keto-3-deoxy-L-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: implications to L-rhamnose metabolism in archaea. Extremophiles 19:469–478

    Article  CAS  PubMed  Google Scholar 

  • Buchanan CL, Connaris H, Danson MJ, Reeve CD, Hough DW (1999) An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates. Biochem J 343:563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SJ, Kim JA, Lee SB (2015) Identification and characterization of 3,6-anhydro-L-galactonate cyloisomerase belonging to the enolase superfamily. Biotechnol Bioprocess Eng 20:462–472

    Article  CAS  Google Scholar 

  • Cho SJ, Lee SB (2014) Identification and characterization of 3,6-anhydro-L-galactose dehydrogenases belonging to the aldehyde dehydrogenase superfamily from marine and soil microorganisms. Biotechnol Bioprocess Eng 19:1058–1068

    Article  CAS  Google Scholar 

  • Cole KM, Sheath RG (1990) Biology of the red algae. Cambridge University Press, New York

    Google Scholar 

  • Cooper RA (1978) The utilisation of D-galactonate and D-2-oxo-3-deoxygalactonate by Escherichia coli K-12. Biochemical and genetical studies. Arch Microbiol 118:199–206

    Article  CAS  PubMed  Google Scholar 

  • De Ley J, Doudoroff M (1957) The metabolism of D-galactose in Pseudomonas saccharophila. J Biol Chem 227:745–757

    Google Scholar 

  • Ducatti DR, Massi A, Noseda MD, Duarte ME, Dondoni A (2009) Production of carbohydrate building blocks from red seaweed polysaccharides. Efficient conversion of galactans into C-glycosyl aldehydes. Org Biomol Chem 7:576–588

    Article  CAS  PubMed  Google Scholar 

  • Duckworth M, Yaphe W (1970) Thin-layer chromatographic analysis of enzymic hydrolysates of agar. J Chromatogr 49:482–487

    Article  CAS  PubMed  Google Scholar 

  • Entner N, Doudoroff M (1952) Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem 196:853–862

    CAS  PubMed  Google Scholar 

  • Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Hargreaves PI, Barcelos CA, da Costa AC, Pereira N Jr (2013) Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies. Bioresour Technol 134:257–263

    Article  CAS  PubMed  Google Scholar 

  • Haworth WN, Jackson J, Smith F (1940) The properties of 3:6-anhydrogalactose. J Chem Soc 620-632

  • Hwang HJ, Lee SY, Kim SM, Lee SB (2011) Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnol Bioproess Eng 16:1231–1239

    Article  CAS  Google Scholar 

  • Johansen JE, Nielsen P, Sjøholm C (1999) Description of Cellulophaga baltica gen. nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [Cytophaga] lytica to Cellulophaga lytica gen. nov., comb. nov. Int J Syst Bacteriol 49:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Lee SB (2005) Identification and characterization of Thermoplasma acidophilum 2-keto-deoxy-D-gluconate kinase: a new class of sugar kinases. Biotechnol Bioprocess Eng 10:535–539

    Article  CAS  Google Scholar 

  • Jung JH, Lee SB (2006) Identification and characterization of Thermoplasma acidophilum glyceraldehyde dehydrogenase: a new class of NADP+-specific aldehyde dehydrogenase. Biochem J 397:131–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Lee SB (2005) Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner–Doudoroff pathway. Biochem J 387:271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Lee SB (2006) Characterization of Sulfolobus solfataricus 2-keto-3-deoxy-D-gluconate kinase in the modified Entner-Doudoroff pathway. Biosci Biotechnol Biochem 70:1308–1316

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee SB (2008) Identification and characterization of the bacterial D-gluconate dehydratase in Achromobacter xylosoxidans. Biotechnol Bioprocess Eng 13:436–444

    Article  CAS  Google Scholar 

  • Kim SM, Paek KH, Lee SB (2012) Characterization of NADP+-specific L-rhamnose dehydrogenase from the thermoacidophilic Archaeon Thermoplasma acidophilum. Extremophiles 16:447–454

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Cho SJ, Kim SM, Lee SB (2012) Postechiella marina gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62:1528–1535

    Article  CAS  PubMed  Google Scholar 

  • Lee SB (2015) Unusual metabolism of 3,6-anhydro-L-galactose in Vibrio sp. EJY3 and in E. coli containing two Vibrio sp. EJY3 genes. Biotechnol Bioprocess Eng 20:714–717

    Article  CAS  Google Scholar 

  • Lee SB, Cho SJ, Kim JA, Lee SY, Kim SM, Lim HS (2014) Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol Bioprocess Eng 19:866–878

    Article  CAS  Google Scholar 

  • Lee SB, Lee SY, Lim HS (2015) Aldehydic nature and conformation of 3,6-anhydro-L-galactose monomer. Biotechnol Bioprocess Eng 20:878–886

    Article  CAS  Google Scholar 

  • Meinita MDN, Kang J-Y, Jeong G-T, Koo HM, Park SM, Hong Y-K (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J Appl Phycol 24:857–862

    Article  CAS  Google Scholar 

  • Meinita MDN, Marhaeni B, Winanto T, Jeong GT, Khan MNA, Hong YK (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J Appl Phycol 25:1957–1961

    Article  CAS  Google Scholar 

  • Michalska K, Cuff ME, Tesar C, Feldmann B, Joachimiak A (2011) Structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. Acta Crystallogr D Biol Crystallogr 67:678–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DA, Suen G, Clements KD, Angert ER (2012) The genomic basis for the evolution of a novel form of cellular reproduction in the bacterium Epulopiscium. BMC Genomics 13:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutripah S, Meinita MDN, Kang J-Y, Jeong G-T, Susanto AB, Prabowo RE, Hong Y-K (2014) Bioethanol production from the hydrolysate of Palmaria palmata using sulfuric acid and fermentation with brewer’s yeast. J Appl Phycol 26:687–693

    Article  CAS  Google Scholar 

  • Noh M, Jung JH, Lee SB (2006) Purification and characterization of glycerate kinase from the thermoacidophilic archaeon Thermoplasma acidophium: an enzyme belonging to the second glycerate kinase family. Biotechnol Bioprocess Eng 11:344–350

    Article  CAS  Google Scholar 

  • O’Neill AN (1955a) 3,6-Anhydro-D-galactose as a constituent of κ-carrageenin. J Am Chem Soc 77:2837–2839

    Article  Google Scholar 

  • O’Neill AN (1955b) Derivatives of 4-0-β-D-galactopyranosyl-3,6-anhydro-D-galactose from κ-carrageenin. J Am Chem Soc 77:6324–6328

    Article  Google Scholar 

  • Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ (2012) Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:93–88

    Article  Google Scholar 

  • Skoza L, Mohos S (1976) Stable thiobarbituric acid chromophore with dimethyl sulphoxide. Application to sialic acid assay in analytical de-O-acetylation. Biochem J 159:457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian W, Skolnick J (2003) How well is enzyme function conserved as a function of pairwise sequence identity? J Mol Biol 333:863–882

    Article  CAS  PubMed  Google Scholar 

  • Walters MJ, Srikannathasan V, McEwan AR, Naismith JH, Fierke CA, Toone EJ (2008) Characterization and crystal structure of Escherichia coli KDPGal aldolase. Bioorg Med Chem 16:710–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson CA, Kreychman J, Gerstein M (2000) Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J Mol Biol 297:233–249

    Article  CAS  PubMed  Google Scholar 

  • Yaphe W (1957) The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Can J Microbiol 3:987–993

    Article  CAS  PubMed  Google Scholar 

  • Yun EJ, Lee S, Kim HT, Pelton JG, Kim S, Ko HJ, Choi IG, Kim KH (2015) The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ Microbiol 17:1677–1688

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Bok Lee.

Ethics declarations

Funding

This study was funded by POSCO and in part by the Korea Institute for Advancement of Technology grant funded by the Ministry of Trade, Industry and Energy (2015 Establishment of GEM, No. H2001-13-1001).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.B., Kim, J.A. & Lim, H.S. Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms. Appl Microbiol Biotechnol 100, 4109–4121 (2016). https://doi.org/10.1007/s00253-016-7346-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7346-6

Keywords

Navigation