Skip to main content

Advertisement

Log in

The alkaloid gramine in the anaerobic digestion process—inhibition and adaptation of the methanogenic community

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

As many plant secondary metabolites have antimicrobial activity, microorganisms of the anaerobic digestion process might be affected when plant material rich in these compounds is digested. Hitherto, the effects of plant secondary metabolites on the anaerobic digestion process are poorly investigated. In this study, the alkaloid gramine, a constituent of reed canary grass, was added daily to a continuous co-digestion of grass silage and cow manure. A transient decrease of the methane yield by 17 % and a subsequent recovery was observed, but no effect on other process parameters. When gramine was infrequently spiked in higher amounts, the observed inhibitory effect was even more pronounced including a 53 % decrease of the methane yield and an increase of acetic acid concentrations up to 96 mM. However, the process recovered and the process parameters were finally at initial values (methane yield around 255 LN CH4 per gram volatile solids of substrate and acetic acid concentration lower than 2 mM). The bacterial communities of the reactors remained stable upon gramine addition. In contrast, the methanogenic community changed from a well-balanced mixture of five phylotypes towards a strong dominance of Methanosarcina (more than two thirds of the methanogenic community) while Methanosaeta disappeared. Batch inhibition assays revealed that acetic acid was only converted to methane via acetoclastic methanogenesis which was more strongly affected by gramine than hydrogenotrophic methanogenesis and acetogenesis. Hence, when acetoclastic methanogenesis is the dominant pathway, a shift of the methanogenic community is necessary to digest gramine-rich plant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguiar R, Wink M (2005) Do naive ruminants degrade alkaloids in the rumen? J Chem Ecol 31:761–787. doi:10.1007/s10886-005-3543-y

    Article  CAS  PubMed  Google Scholar 

  • Akassou M, Kaanane A, Crolla A, Kinsley C (2010) Statistical modelling of the impact of some polyphenols on the efficiency of anaerobic digestion and the co-digestion of the wine distillery wastewater with dairy cattle manure and cheese whey. Water Sci Technol 62:475–483. doi:10.2166/wst.2010.235

    Article  CAS  PubMed  Google Scholar 

  • Akyol Ç, Ince O, Coban H, Koksel G, Cetecioglu Z, Ayman Oz N, Ince B (2015) Individual and combined inhibitory effects of methanol and toluene on acetyl-CoA synthetase expression level of acetoclastic methanogen, Methanosaeta concilii. Int Biodeter Biodegr 105:233–238. doi:10.1016/j.ibiod.2015.09.013

    Article  CAS  Google Scholar 

  • Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38:560–564. doi:10.1007/BF00242955

    Article  CAS  Google Scholar 

  • Aydin S, Cetecioglu Z, Arikan O, Ince B, Ozbayram EG, Ince O (2015) Inhibitory effects of antibiotic combinations on syntrophic bacteria, homoacetogens and methanogens. Chemosphere 120:515–520. doi:10.1016/j.chemosphere.2014.09.045

    Article  CAS  PubMed  Google Scholar 

  • Aydin S, Ince B, Ince O (2016) Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes. Bioresour Technol 207:332–338. doi:10.1016/j.biortech.2016.01.080

    Article  CAS  PubMed  Google Scholar 

  • Bodas R, López S, Fernández M, García-González R, Rodríguez AB, Wallace RJ, González JS (2008) In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim Feed Sci Tech 145:245–258. doi:10.1016/j.anifeedsci.2007.04.015

    Article  CAS  Google Scholar 

  • Borja R, Alba J, Banks CJ (1997) Impact of the main phenolic compounds of olive mill wastewater (OMW) on the kinetics of acetoclastic methanogenesis. Process Biochem 32:121–133. doi:10.1016/s0032-9592(96)00055-6

    Article  CAS  Google Scholar 

  • Briones A, Raskin L (2003) Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol 14:270–276. doi:10.1016/s0958-1669(03)00065-x

    Article  CAS  PubMed  Google Scholar 

  • Bühligen F, Lucas R, Nikolausz M, Kleinsteuber S (2016) A T-RFLP database for the rapid profiling of methanogenic communities in anaerobic digesters. Anaerobe 39:114–116. doi:10.1016/j.anaerobe.2016.03.013

    Article  PubMed  Google Scholar 

  • Butkutė B, Lemežienė N, Kanapeckas J, Navickas K, Dabkevičius Z, Venslauskas K (2014) Cocksfoot, tall fescue and reed canary grass: dry matter yield, chemical composition and biomass convertibility to methane. Biomass Bioenerg 66:1–11. doi:10.1016/j.biombioe.2014.03.014

    Article  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exp Toxicol 21:91–97. doi:10.1191/0960327102ht217oa

    Article  CAS  PubMed  Google Scholar 

  • Carballa M, Smits M, Etchebehere C, Boon N, Verstraete W (2011) Correlations between molecular and operational parameters in continuous lab-scale anaerobic reactors. Appl Microbiol Biotechnol 89:303–314. doi:10.1007/s00253-010-2858-y

    Article  CAS  PubMed  Google Scholar 

  • Casler MD, Cherney JH, Brummer EC (2009) Biomass yield of naturalized populations and cultivars of reed canary grass. Bioenergy Res 2:165–173. doi:10.1007/s12155-009-9043-0

    Article  Google Scholar 

  • Cetecioglu Z, Ince B, Orhon D, Ince O (2012) Acute inhibitory impact of antimicrobials on acetoclastic methanogenic activity. Bioresour Technol 114:109–116. doi:10.1016/j.biortech.2012.03.020

    Article  CAS  PubMed  Google Scholar 

  • Chapleur O, Madigou C, Civade R, Rodolphe Y, Mazéas L, Bouchez T (2015) Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities. Biodegradation 27:15–27. doi:10.1007/s10532-015-9751-4

    Article  PubMed  Google Scholar 

  • Coulman BE, Clark KW, Woods DL (1977) Effects of selected reed canary grass alkaloids on in vitro digestibility. Can J Plant Sci 57:779–785

    Article  CAS  Google Scholar 

  • Coulman BE, Woods DL, Clark KW (1976) Identification of low alkaloid genotypes of reed canary grass. Can J Plant Sci 56:837–845

    Article  CAS  Google Scholar 

  • De Vrieze J, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9. doi:10.1016/j.biortech.2012.02.079

    Article  PubMed  Google Scholar 

  • Duynisveld GW, Slominski BA, Wittenberg KM, Campbell LD (1990) Alkaloid content of reed canarygrass (Phalaris arundinaceae L.) as determined by gas-liquid chromatography. Can J Plant Sci 70:1097–1103

    Article  CAS  Google Scholar 

  • Flores GAE, Fotidis IA, Karakashev DB, Kjellberg K, Angelidaki I (2015) Effects of benzalkonium chloride, Proxel LV, P3 hypochloran, triton X-100 and DOWFAX 63 N10 on anaerobic digestion processes. Bioresour Technol 193:393–400. doi:10.1016/j.biortech.2015.06.125

  • García-González R, López S, Fernández M, Bodas R, González JS (2008) Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Anim Feed Sci Tech 147:36–52. doi:10.1016/j.anifeedsci.2007.09.008

    Article  Google Scholar 

  • Gonzalez-Estrella J, Sierra-Alvarez R, Field JA (2013) Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge. J Hazard Mater 260:278–285. doi:10.1016/j.jhazmat.2013.05.029

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (1999) Classes and functions of secondary products from plants. In: Walton NJ, Brown, D.E. (ed) Chemicals from plants: perspectives on plant secondary products. World Scientific & Imperial College Press, London, pp 1–26

  • Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23:118–127. doi:10.1264/jsme2.23.118

    Article  PubMed  Google Scholar 

  • Hernandez JE, Edyvean RGJ (2008) Inhibition of biogas production and biodegradability by substituted phenolic compounds in anaerobic sludge. J Hazard Mater 160:20–28. doi:10.1016/j.jhazmat.2008.02.075

    Article  CAS  PubMed  Google Scholar 

  • Herrmann AP, Janke HD (2001) Cofermentation of rutin and hesperidin during two-stage anaerobic pre-treatment of high-loaded brewery wastewater. Water Res 35:2583–2588. doi:10.1016/s0043-1354(00)00575-3

    Article  CAS  PubMed  Google Scholar 

  • Hill DT, Cobb SA, Bolte JP (1987) Using volatile fatty-acid relationships to predict anaerobic digester failure. Transactions of the ASAE 30:496–501

    Article  CAS  Google Scholar 

  • Hill DT, Holmberg RD (1988) Long-chain volatile fatty acid relationships in anaerobic digestion of swine waste. Biol Waste 23:195–214. doi:10.1016/0269-7483(88)90034-1

    Article  CAS  Google Scholar 

  • Hwu CS, Lettinga G (1997) Acute toxicity of oleate to acetate-utilizing methanogens in mesophilic and thermophilic anaerobic sludges. Enzyme Microb Tech 21:297–301. doi:10.1016/s0141-0229(97)00050-1

    Article  CAS  Google Scholar 

  • Jasinskas A, Zaltauskas A, Kryzeviciene A (2008) The investigation of growing and using of tall perennial grasses as energy crops. Biomass Bioenerg 32:981–987. doi:10.1016/j.biombioe.2008.01.025

    Article  CAS  Google Scholar 

  • Jeris JS, McCarty PL (1965) The biochemistry of methane fermentation using C14 tracers. Water Pollut Con F 37:178–192

    CAS  Google Scholar 

  • Johnson JM-F, Coleman MD, Gesch R, Jaradat A, Mitchell R, Reicosky D, Wilhelm WW (2007) Biomass-bioenergy crops in the United States: a changing paradigm. Am J Plant Sci Bio 1:1–28

    Google Scholar 

  • Karri S, Sierra-Alvarez R, Field JA (2006) Toxicity of copper to acetoclastic and hydrogenotrophic activities of methanogens and sulfate reducers in anaerobic sludge. Chemosphere 62:121–127. doi:10.1016/j.chemosphere.2005.04.016

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, M G (eds) nucleic acid techniques in bacterial systematics. John Wiley & Sons, Chichester, pp. 177–203

    Google Scholar 

  • Lehtomäki A, Viinikainen TA, Rintala JA (2008) Screening boreal energy crops and crop residues for methane biofuel production. Biomass Bioenergy 32:541–550. doi:10.1016/j.biombioe.2007.11.013

    Article  Google Scholar 

  • Lv Z, Hu M, Harms H, Richnow HH, Liebetrau J, Nikolausz M (2014) Stable isotope composition of biogas allows early warning of complete process failure as a result of ammonia inhibition in anaerobic digesters. Bioresour Technol 167:251–259. doi:10.1016/j.biortech.2014.06.029

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhao Q-B, Laurens LLM, Jarvis EE, Nagle NJ, Chen S, Frear CS (2015) Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol Biofuels 8:1–12. doi:10.1186/s13068-015-0322-z

    Article  CAS  Google Scholar 

  • Mannucci A, Munz G, Mori G, Lubello C (2010) Anaerobic treatment of vegetable tannery wastewaters: a review. Desalination 264:1–8. doi:10.1016/j.desal.2010.07.021

    Article  CAS  Google Scholar 

  • Marten GC, Jordan RM, Hovin AW (1976) Biological significance of reed canarygrass alkaloids and associated palatability variation to grazing sheep and cattle. Agron J 68:909–914. doi:10.2134/agronj1976.00021962006800060017x

    Article  CAS  Google Scholar 

  • Mathews JA (2009) From the petroeconomy to the bioeconomy: integrating bioenergy production with agricultural demands. Biofuel Bioprod Bior 3:613–632. doi:10.1002/bbb.181

    Article  CAS  Google Scholar 

  • Nielsen HB, Ahring BK (2006) Responses of the biogas process to pulses of oleate in reactors treating mixtures of cattle and pig manure. Biotechnol Bioeng 95:96–105. doi:10.1002/bit.20963

    Article  CAS  PubMed  Google Scholar 

  • Nikolausz M, Walter RFH, Sträuber H, Liebetrau J, Schmidt T, Kleinsteuber S, Bratfisch F, Günther U, Richnow HH (2013) Evaluation of stable isotope fingerprinting techniques for the assessment of the predominant methanogenic pathways in anaerobic digesters. Appl Microbiol Biot 97:2251–2262. doi:10.1007/s00253-012-4657-0

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2016) Multivariate analysis of ecological communities in R: vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf Accessed 12.01.2016 2016

  • Oleszek M, Król A, Tys J, Matyka M, Kulik M (2014) Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour Technol 156:303–306. doi:10.1016/j.biortech.2014.01.055

    Article  CAS  PubMed  Google Scholar 

  • Popp D, Schrader S, Kleinsteuber S, Harms H, Sträuber H (2015) Biogas production from coumarin-rich plants—inhibition by coumarin and recovery by adaptation of the bacterial community. FEMS Microbiol Ecol 91. doi:10.1093/femsec/fiv103

  • Porsch K, Wirth B, Tóth EM, Schattenberg F, Nikolausz M (2015) Characterization of wheat straw-degrading anaerobic alkali-tolerant mixed cultures from soda lake sediments by molecular and cultivation techniques. Microbial Biotechnol 8:801–814. doi:10.1111/1751-7915.12272

    Article  CAS  Google Scholar 

  • Rodriguez-Freire L, Moore SE, Sierra-Alvarez R, Field JA (2015) Adaptation of a methanogenic consortium to arsenite inhibition. Water Air Soil Poll 226:1–7. doi:10.1007/s11270-015-2672-3

    Article  CAS  Google Scholar 

  • Rosenkranz F, Cabrol L, Carballa M, Donoso-Bravo A, Cruz L, Ruiz-Filippi G, Chamy R, Lema JM (2013) Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR. Water Res 47:6739–6749. doi:10.1016/j.watres.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  • Sepulveda BA, Corcuera LJ (1990) Effect of gramine on the susceptibility of barley leaves to Pseudomonas syringae. Phytochemistry 29:465–467. doi:10.1016/0031-9422(90)85098-z

    Article  CAS  Google Scholar 

  • Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74:6663–6671. doi:10.1128/AEM.00553-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasil Z (2012) Evaluation of reed canary grass (Phalaris arundinacea L.) grown for energy use. Res Agr Eng 58:119–130

    Google Scholar 

  • Sträuber H, Schröder M, Kleinsteuber S (2012) Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process. Energ Sustain Soc 2:13. doi:10.1186/2192-0567-2-13

    Article  Google Scholar 

  • Town JR, Links MG, Fonstad TA, Dumonceaux TJ (2014) Molecular characterization of anaerobic digester microbial communities identifies microorganisms that correlate to reactor performance. Bioresour Technol 151:249–257. doi:10.1016/j.biortech.2013.10.070

    Article  CAS  PubMed  Google Scholar 

  • Wallace RJ (2004) Antimicrobial properties of plant secondary metabolites. P Nutr Soc 63:621–629. doi:10.1079/pns2004393

    Article  CAS  Google Scholar 

  • Wang H, Lehtomäki A, Tolvanen K, Puhakka J, Rintala J (2009) Impact of crop species on bacterial community structure during anaerobic co-digestion of crops and cow manure. Bioresour Technol 100:2311–2315. doi:10.1016/j.biortech.2008.10.040

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Tolvanen K, Lehtomäki A, Puhakka J, Rintala J (2010) Microbial community structure in anaerobic co-digestion of grass silage and cow manure in a laboratory continuously stirred tank reactor. Biodegradation 21:135–146. doi:10.1007/s10532-009-9288-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge our collaboration partners from Deutsches Biomasseforschungszentrum (DBFZ) for support on chemical analyses. We like to thank Ute Lohse for technical support (T-RFLP), Franziska Bühligen, and Sebastian Röther for operating the reactors and Dirk K. Wissenbach for instructions and providing the GC-MS instrument to measure ratios of 13C-labeled CH4 and CO2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denny Popp.

Ethics declarations

Funding

This work was supported by the portfolio theme Sustainable Bioeconomy of the Helmholtz Association.

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popp, D., Harms, H. & Sträuber, H. The alkaloid gramine in the anaerobic digestion process—inhibition and adaptation of the methanogenic community. Appl Microbiol Biotechnol 100, 7311–7322 (2016). https://doi.org/10.1007/s00253-016-7571-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7571-z

Keywords

Navigation