Skip to main content
Log in

Quorum-sensing in yeast and its potential in wine making

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This mini-review synthesises the present knowledge of microbial quorum-sensing, with a specific focus on quorum-sensing in yeast, and especially in wine yeast. In vine and wine ecosystems, yeast co-interact with a large variety of microorganisms, thereby affecting the fermentation process and, consequently, the flavour of the wine. The precise connections between microbial interactions and quorum-sensing remain unclear, but we describe here how and when some species start to produce quorum-sensing molecules to synchronously adapt their collective behaviour to new conditions. In Saccharomyces cerevisiae, the quorum-sensing molecules were identified as 2-phenylethanol and tryptophol. However, it was recently shown that also a quorum-sensing molecule formerly identified only in Candida albicans, tyrosol, appears to be regulated in S. cerevisiae according to cell density. This review describes the methods for detection and quantification of those quorum-sensing molecules, their underlying mechanisms of action, and their genetic background. It also examines the external stimuli that evoke the quorum-sensing mechanism in the wine-processing environment. The review closes with insight into the biotechnological applications that are already making use of the advantages of quorum-sensing systems and indicates the important questions that still need to be addressed in future research into quorum-sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Affeldt KJ, Brodhagen M, Keller NP (2012) Aspergillus oxylipin signaling and quorum sensing pathways depend on g protein-coupled receptors. Toxins 4(9):695–717. doi:10.3390/toxins4090695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albergaria H, Arneborg N (2016) Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions. Appl Microbiol Biotechnol 100(5):2035–2046. doi:10.1007/s00253-015-7255-0

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi—a review. Med Mycol 50:337–345. doi:10.3109/13693786.2011.652201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR, Silva-Pereira I, Casadevall A (2013) Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. MBio 5:1–15. doi:10.1128/mBio.00986-13

    Google Scholar 

  • Alem MAS, Oteef MDY, Flowers TH, Douglas LJ (2006) Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell 5:1770–1779. doi:10.1128/EC.00219-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978. doi:10.1098/rsif.2009.0203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avbelj M, Zupan J, Kranjc L, Raspor P (2015) Quorum-sensing kinetics in Saccharomyces cerevisiae: a symphony of ARO genes and aromatic alcohols. J Agric Food Chem 63:8544–8550. doi:10.1021/acs.jafc.5b03400

    Article  CAS  PubMed  Google Scholar 

  • Bacchus W, Fussenegger M (2013) Engineering of synthetic intercellular communication systems. Metab Eng 16:33–41

    Article  CAS  PubMed  Google Scholar 

  • Barata A, Malfeito-Ferreira M, Loureiro V (2012) The microbial ecology of wine grape berries. Int J Food Microbiol 153:243–259

    Article  CAS  PubMed  Google Scholar 

  • Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya I, Choudhury M (2008) Quorum sensing – let bacteria talk. Advanced Biotech 7:30–33

  • Braus GH, Grundmann O, Bruckner S, Hans-Ulrich BS (2003) Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae. Mol Biol Cell 14:4272–4284. doi:10.1091/mbc.E03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161. doi:10.1101/gad.1411806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101:5048–5052. doi:10.1073/pnas.0401416101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciani M, Comitini F (2015) Yeast interactions in multi-starter wine fermentation. Curr Opin Food Sci 1:1–6. doi:10.1016/j.cofs.2014.07.001

    Article  Google Scholar 

  • Ciani M, Capece A, Comittini F, Canonico L, Siesto G, Romano P (2016) Yeast interactions in inoculated wine fermentation. Front Microbiol 7:1–7. doi:10.3389/fmicb.2016.00555

    Google Scholar 

  • Comitini F, Di Pietro N, Zacchi L, Mannazzu I, Ciani M (2004) Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: purification and characterization. Microbiology 150:2535–2541. doi:10.1099/mic.0.27145-0

  • Cueva C, Mingo S, Munoz-Gonzalez I, Bustos I, Requena T, del Campo R, Martin-Alvarez PJ, Bartolome B, Moreno-Arribas MR (2012) Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens. Lett Appl Microbiol 54:557–563

    Article  CAS  PubMed  Google Scholar 

  • Cullen PJ, Sprague GF (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A 97:13619–13624. doi:10.1073/pnas.240345197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Čadež N, Zupan J, Raspor P (2010) The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res 10:619–630. doi:10.1111/j.1567-1364.2010.00635.x

    PubMed  Google Scholar 

  • Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403. doi:10.1128/JB.01214-08

    Article  CAS  PubMed  Google Scholar 

  • De Sordi L, Mühlschlegel FA (2009) Quorum sensing and fungal-bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res 9:990–999

    Article  PubMed  Google Scholar 

  • Didion T, Grauslund M, Kielland-Brandt MC, Andersen HA (1996) Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae. J Bacteriol 178:2025–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diggle SP, Griffin AS, Campell GS, West SA (2007) Cooperation and conflict in quorum-sensing bacterial populations. Nat Lett 450:411–414

    Article  CAS  Google Scholar 

  • Ehrlich F (1907) Über die Bedingungen der Fuselölbildung und über ihren Zusammenhang mit dem Eiweißaufbau der Hefe. Ber Dtsch Chem Ges 40:1027–1047

    Article  CAS  Google Scholar 

  • Etschmann MMW, Schrader J (2006) An aqueous-organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol and 2-phenylethylacetate with yeast. Appl Microbiol Biotechnol 71:440–443. doi:10.1007/s00253-005-0281-6

    Article  CAS  PubMed  Google Scholar 

  • Etschmann MMW, Sell D, Schrader J (2003) Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnol Lett 25:531–536. doi:10.1023/A:1022890119847

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH, Prakitchaiwattana CJ, Beh AL, Heard GM (2002) The yeast ecology of wine grapes. In: Ciani M (ed) biodiversity and biotechnology of wine yeasts. Research Singpost, Kerala, pp 1–17

    Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garde-Cerdán T, Marsellés-Fontanet AR, Arias-Gil M, Ancín-Azpilicueta C, Martín-Belloso O (2008) Effect of storage conditions on the volatile composition of wines obtained from must stabilized by PEF during ageing without SO2. Innov Food Sci Emerg Technol 9:469–476. doi:10.1016/j.ifset.2008.05.002

    Article  Google Scholar 

  • Garde-Cerdán T, Marsellés-Fontanet AR, Arias-Gil M, Martín-Belloso O, Ancín-Azpilicueta C (2007) Influence of SO2 on the consumption of nitrogen compounds through alcoholic fermentation of must sterilized by pulsed electric fields. Food Chem 103:771–777. doi:10.1016/j.foodchem.2006.09.018

    Article  Google Scholar 

  • Ghosh S, Kebaara BW, Atkin AL, Nickerson KW (2008) Regulation of aromatic alcohol production in Candida albicans. Appl Environ Microbiol 74:7211–7218. doi:10.1128/AEM.01614-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090. doi:10.1016/0092-8674(92)90079-R

    Article  CAS  PubMed  Google Scholar 

  • González-Marco A, Jiménez-Moreno N, Ancín-Azpilicueta C (2010) Influence of nutrients addition to nonlimited-in-nitrogen must on wine volatile composition. J Food Sci 75:206–211. doi:10.1111/j.1750-3841.2010.01578.x

    Article  Google Scholar 

  • Gori K, Knudsen PB, Nielsen KF, Arneborg N, Jespersen L (2011) Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii. FEMS Yeast Res 11:643–652. doi:10.1111/j.1567-1364.2011.00755.x

    Article  CAS  PubMed  Google Scholar 

  • Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:6041–6052. doi:10.1128/AEM.00394-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregus P, Vlcková H, Buchta V, Kestranek J, Krivcíková L, Nováková L (2010) Ultra high performance liquid chromatography tandem mass spectrometry analysis of quorum-sensing molecules of Candida albicans. J Pharm Biomed Anal 53:674–681. doi:10.1016/j.jpba.2010.05.029

    Article  CAS  PubMed  Google Scholar 

  • Gueguen Y, Chemardin P, Pien S, Arnaud A, Galzy P (1997) Enhancement of aromatic quality of Muscat wine by the use of immobilized β-glucosidase. J Biotechnol 55:151–156

    Article  CAS  Google Scholar 

  • Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97:12158–12163. doi:10.1073/pnas.220420397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazelwood LA, Daran JM, Van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74(8):2259–2266. doi:10.1128/AEM.02625-07

  • Hlaváček O, Kučerová H, Harant K, Palková Z, Váchová L (2009) Putative role for ABC multidrug exporters in yeast quorum sensing. FEBS Lett 583:1107–1113. doi:10.1016/j.febslet.2009.02.030

    Article  PubMed  Google Scholar 

  • Hogan DA (2006a) Talking to themselves : autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619. doi:10.1128/EC.5.4.613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan DA (2006b) Quorum sensing: alcohols in a social situation. Curr Biol 16:R457–R458

    Article  CAS  PubMed  Google Scholar 

  • Homer CM, Summers DK, Goranov AI, Clarke SC, Wiesner DL, Diedrich JK, Moresco JJ, Toffaletti D, Upadhya R, Caradonna I, Petnic S, Pessino V, Cuomo CA, Lodge JK, Perfect J, Yates JR, Nielsen K, Craik CS, Madhani HD (2016) Intracellular action of a secreted peptide required for fungal virulence. Cell Host Microbe 19:849–864. doi:10.1016/j.chom.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto J, Jahnke B, Shoemaker R, Nickerson KW, Tasto JJ, Dussault P (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992. doi:10.1128/AEM.67.7.2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua D, Lin S, Li Y, Chen H, Zhang Z, Du Y, Zhang X, Xu P (2010) Enhanced 2-phenylethanol production from L-phenylalanine via in situ product adsorption. Biocatal Biotransformation 28:259–266. doi:10.3109/10242422.2010.500724

    Article  CAS  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284. doi:10.1038/sj.gene.6364190

    Article  CAS  PubMed  Google Scholar 

  • Iraqui I, Vissers S, André B, Urrestarazu A (1999) Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 19:3360–3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iraqui I, Vissers S, Cartiaux M, Urrestarazu A (1998) Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. Mol Gen Genet 257:238–248. doi:10.1007/s004380050644

    Article  CAS  PubMed  Google Scholar 

  • Ivey M, Massel M, Phister TG (2013) Microbial interactions in food fermentations. Annu Rev Food Sci Technol 4:141–162. doi:10.1146/annurev-food-022811-101219

    Article  CAS  PubMed  Google Scholar 

  • Kerekes EB, Deák É, Takó M, Tserennadmid R, Petkovits T, Vágvölgyi C, Krisch J (2013) Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms. J Appl Microbiol 115:933–942. doi:10.1111/jam.12289

    CAS  PubMed  Google Scholar 

  • Kotseridis Y, Baumes R (2000) Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. J Agric Food Chem 48:400–406. doi:10.1021/jf990565i

    Article  CAS  PubMed  Google Scholar 

  • Kruppa M (2009) Quorum sensing and Candida albicans. Mycoses 52:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lindsay AK, Deveau A, Piispanen AE, Hogan DA (2012) Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. Eukaryot Cell 11(10):1219–1225. doi:10.1128/EC.00144-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo WS, Dranginis AM (1996) FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178:7144–7151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo WS, Dranginis AM (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9:161–171. doi:10.1091/mbc.9.1.161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowery CA, Abe T, Park J, Eubanks LM, Sawada D, Kaufmann GF, Janda KD (2009) Revisiting AI-2 quorum sensing inhibitors: direct comparison of alkyl-DPD analogues and a natural product fimbrolide. J Am Chem Soc 131:15584–15585. doi:10.1021/ja9066783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Su C, Unoje O, Liu H (2014) Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. PNAS 111(5):1975–1980. doi:10.1073/pnas.1318690111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • March JC, Bentley WE (2004) Quorum sensing and bacterial cross-talk in biotechnology. Curr Opin Biotech 15(5):495–502

    Article  CAS  PubMed  Google Scholar 

  • Martí MP, Mestres M, Sala C, Busto O, Guasch J (2003) Solid-phase microextraction and gas chromatography olfactometry analysis of successively diluted samples. A new approach of the aroma extract dilution analysis applied to the characterization of wine aroma. J Agric Food Chem 51:7861–7865. doi:10.1021/jf0345604

    Article  PubMed  Google Scholar 

  • Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveira R (2010) Candida species extracellular alcohols: production and effect in sessile cells. J Basic Microbiol 50:89–97. doi:10.1002/jobm.200900442

    Article  Google Scholar 

  • Marx V (2014) Cell communication: stop the microbial chatter. Nature 511:493–497. doi:10.1038/511493a

    Article  CAS  PubMed  Google Scholar 

  • McCusker JH, Clemons KV, Stevens DA, Davis RW (1994) Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 degrees C and form pseudohyphae. Infect Immun 62:5447–5455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monds RD, O’Toole GA (2008) Metabolites as intercellular signals for regulation of community-level traits. In: Winans SC, Bassler BL (eds) Chemical communication among bacteria. ASM Press, Washington, pp 120–123

    Google Scholar 

  • Mösch HU, Kübler E, Krappmann S, Fink GR, Braus GH (1999) Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10:1325–1335. doi:10.1091/mbc.10.5.1325

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro GF, Sanchez M, Nombela C, Pla J (2001) Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 25:245–268

    Article  Google Scholar 

  • Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: Farnesol and beyond. Appl Environ Microbiol 72:3805–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissen P, Arneborg N (2003) Characterization of early deaths of non- Saccharomyces yeasts in mixed cultures with Saccharomyces cerevisiae. Arch Microbiol 180:257–263. doi:10.1007/s00203-003-0585-9

    Article  CAS  PubMed  Google Scholar 

  • Nissen P, Nielsen D, Arneborg N (2003) Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-mediated mechanism. Yeast 20:331–341. doi:10.1002/yea.965

    Article  CAS  PubMed  Google Scholar 

  • Palková Z, Janderová B, Gabriel J, Zikánová B, Pospísek M, Forstová J (1997) Ammonia mediates communication between yeast colonies. Nature 390:532–536. doi:10.1038/37398

    Article  PubMed  Google Scholar 

  • Pan X, Harashima T, Heitman J (2000) Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr Opin Microbiol 3:567–572

    Article  CAS  PubMed  Google Scholar 

  • Perez-Nevado F, Albergaria H, Hogg T, Girio F (2006) Cellular death of two non-Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae. Int J Food Microbiol 108:336–345. doi:10.1016/j.ijfoodmicro.2005.12.012

    CAS  PubMed  Google Scholar 

  • Perrone B, Giacosa S, Rolle L, Cocolin L, Rantsiou K (2013) Investigation of the dominance behavior of Saccharomyces cerevisiae strains during wine fermentation. Int J Food Microbiol 165:156–162. doi:10.1016/j.ijfoodmicro.2013.04.023

    Article  CAS  PubMed  Google Scholar 

  • Pu L, Jingfan F, Kai C, Chao-an L, Yunjiang C (2014) Phenylethanol promotes adhesion and biofilm formation of the antagonistic yeast Kloeckera apiculata for the control of blue mold on citrus. FEMS Yeast Res 14(4):536–546. doi:10.1111/1567-1364.12139

    Article  PubMed  Google Scholar 

  • Raspor P, Milek DM, Polanc J, Smole Možina S, Čadež N (2006) Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine-growing region, Slovenia. Int J Food Microbiol 109:97–102. doi:10.1016/j.ijfoodmicro.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  • Renault PE, Albertin W, Bely M (2013) An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions. Appl Microbiol Biotechnol 97:4105–4119. doi:10.1007/s00253-012-4660-5

    Article  CAS  PubMed  Google Scholar 

  • Reynolds TB, Fink GR (2001) Bakers’ yeast, a model for fungal biofilm formation. Science 291:878–881. doi:10.1126/science.291.5505.878

    Article  CAS  PubMed  Google Scholar 

  • Richard P, Bakker BM, Teusink B, Van Dam K, Westerhoff HV (1996) Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells. Eur J Biochem 235:238–241. doi:10.1111/j.1432-1033.1996.00238.x

    Article  CAS  PubMed  Google Scholar 

  • Roberts RL, Fink GR (1994) Elements of a single map kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8:2974–2985. doi:10.1101/gad.8.24.2974

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Cousiño N, Maqueda M, Am-brona J, Zamora E, Esteban R, Ramírez M (2011) A new wine Saccharomyces cerevisiae killer toxin (Klus), encoded by a double-stranded RNA virus, with broad antifungal activity is evolutionarily related to a chromosomal host gene. Appl Environ Microbiol 77(5):1822–1832

  • Rul F, Monnet V (2015) How microbes communicate in food: a review of signaling molecules and their impact on food quality. Curr Opin Food Sci 2:100–105. doi:10.1016/j.cofs.2015.03.003

    Article  Google Scholar 

  • Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18:1257–1269. doi:10.1093/emboj/18.5.1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz T, Walter S, Marten SM, Kirschhöfer F, Nusser M, Obst U (2007) Use of quantitative real-time RT PCR to analyse the expression of some quorum-sensing regulated genes in Pseudomonas aeruginosa. Anal Bioanal Chem 387:513–527

  • Sentheshanuganathan S (1960) The mechanism of the formation of higher alcohols from amino acids by Saccharomyces cerevisiae. Biochem J 74:568–576

    Article  CAS  PubMed  Google Scholar 

  • Shong J, Jimenez Diaz MR, Collins CH (2012) Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol 23:798–802

    Article  CAS  PubMed  Google Scholar 

  • Skandamis PN, Nychas GJE (2012) Quorum sensing in the context of food microbiology. Appl Environ Microbiol 78:5473–5482. doi:10.1128/AEM.00468-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smid EJ, Lacroix C (2013) Microbe-microbe interactions in mixed culture food fermentations. Curr Opin Biotechnol 24:148–154

    Article  CAS  PubMed  Google Scholar 

  • Sprague GF, Winans SC (2006) Eukaryotes learn how to count: Quorum sensing by yeast. Genes Dev 20:1045–1049

    Article  CAS  PubMed  Google Scholar 

  • Truchado P, Larrosa M, Castro-Ibáñeza I, Allende A (2015) Plant food extracts and phytochemicals: their role as quorum sensing inhibitors. Trends Food Sci Technol 43:189–204

    Article  CAS  Google Scholar 

  • Turovskiy Y, Kashtanov D, Paskhover B, Chikindas ML (2007) Quorum sensing: fact, fiction, and everything in between. Adv Appl Microbiol 62:191–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–research0034.11. doi: 10.1186/gb-2002-3-7-research0034

  • Wang H, Dong Q, Guan A, Meng C, Shi X, Guo Y (2011) Synergistic inhibition effect of 2-phenylethanol and ethanol on bioproduction of natural 2-phenylethanol by Saccharomyces cerevisiae and process enhancement. J Biosci Bioeng 112:26–31. doi:10.1016/j.jbiosc.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dohlman HG (2004) Pheromone signaling mechanisms in yeast: a prototypical sex machine. Science 306:1508–1509. doi:10.1126/science.1104568

    Article  CAS  PubMed  Google Scholar 

  • Web of Science (2016) Quorum sensing. United States, Thomson Reuters: database http://www.webofknowledge.com. Accessed March 2016

  • Westman JO, Franzén CJ (2015) Current progress in high cell density yeast bioprocesses for bioethanol production. Biotechnol J 10(8):1185–1195. doi:10.1002/biot.201400581

    Article  CAS  PubMed  Google Scholar 

  • Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, Holden MTG, Linforth R, Cornell KA, Taylor AJ, Hill PJ, Williams P (2002) LuxS: Its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148:909–922

    Article  CAS  PubMed  Google Scholar 

  • Wittmann C, Hans M, Bluemke W (2002) Metabolic physiology of aroma-producing Kluyveromyces marxianus. Yeast 19:1351–1363. doi:10.1002/yea.920

    Article  CAS  PubMed  Google Scholar 

  • Wuster A, Babu MM (2010) Transcriptional control of the quorum sensing response in yeast. Mol Biosyst 6:134–141. doi:10.1039/b913579k

    Article  CAS  PubMed  Google Scholar 

  • Wuster A, Babu MM (2007) Chemical molecules that regulate transcription and facilitate cell-to-cell communication. In: Begley TP (ed) Wiley encyclopedia of chemical biology. John Wiley & Sons, Chichester, pp 1–11. doi:10.1002/9780470048672.wecb501

  • Zhang M, Pan Q, Yan G, Duan C (2011) Using headspace solid phase micro-extraction for analysis of aromatic compounds during alcoholic fermentation of red wine. Food Chem 125:743–749. doi:10.1016/j.foodchem.2010.09.008

    Article  CAS  Google Scholar 

  • Zupan J, Avbelj M, Butinar B, Kosel J, Šergan M, Raspor P (2013) Monitoring of quorum-sensing molecules during minifermentation studies in wine yeast. J Agric Food Chem 61:2496–2505. doi:10.1021/jf3051363

    Article  CAS  PubMed  Google Scholar 

  • Zupan J, Mavri J, Raspor P (2009) Quantitative cell wall protein profiling of invasive and non-invasive Saccharomyces cerevisiae strains. J Microbiol Methods 79:260–265. doi:10.1016/j.mimet.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  • Zupan J, Raspor P (2008) Quantitative agar-invasion assay. J Microbiol Methods 73:100–104. doi:10.1016/j.mimet.2008.02.009

    Article  CAS  PubMed  Google Scholar 

  • Zupan J, Raspor P (2010) Invasive growth of Saccharomyces cerevisiae depends on environmental triggers: a quantitative model. Yeast 27:217–228. doi:10.1002/yea.1746

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Slovenian Research Agency (ARRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Avbelj.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avbelj, M., Zupan, J. & Raspor, P. Quorum-sensing in yeast and its potential in wine making. Appl Microbiol Biotechnol 100, 7841–7852 (2016). https://doi.org/10.1007/s00253-016-7758-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7758-3

Keywords

Navigation