Skip to main content

Advertisement

Log in

Biotransformation of α- and β-pinene into flavor compounds

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Products that bear the label “natural” have gained more attention in the marketplace. In this approach, the production of aroma compounds through biotransformation or bioconversion has been receiving more incentives in economic and research fields. Among the substrates used in these processes, terpenes can be highlighted for their versatility and low cost; some examples are limonene, α-pinene, and β-pinene. This work focused on the biotransformation of the two bicyclic monoterpenes, α-pinene and β-pinene; the use of different biocatalysts; the products obtained; and the conditions employed in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahão MRE (2014) Desenvolvimento de processo biotecnológico para produção de compostos de aroma por fungos endofíticos. Dissertation, Universidade Estadual de Campinas

  • Agrawal R, Joseph R (2000) Bioconversion of alpha pinene to verbenone by resting cells of Aspergillus niger. Appl Microbiol Biotechnol 53:335–337. doi:10.1007/s002530050030

    Article  CAS  PubMed  Google Scholar 

  • Agrawal R, Deepika NUA, Joseph R (1999) Strain improvement of Aspergillus sp. and Penicillium sp. by induced mutation for biotransformation of α-pinene to verbenol. Biotechnol Bioeng 63:249–252. doi:10.1002/(SICI)1097-0290(19990420)63:2<249::AID-BIT14>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  • Akacha BN, Gargouri M (2015) Microbial and enzymatic technologies used for the production of natural aroma compounds: synthesis, recovery modeling, and bioprocesses. Food Bioprod Process 94:675–706. doi:10.1016/j.fbp.2014.09.011

    Article  Google Scholar 

  • Alvarez-Castellenos PP, Bishop CD, Pascual-Villalobos MJ (2001) Antifungal activity of the essential oil of floweheads of Garland chrysanthemum (Chrysanthenum coronarium) against agricultural pathogens. Phytochemistry 57:99–102. doi:10.1016/S0031-9422(00)00461-1

    Article  Google Scholar 

  • Anastas PT, Warner J (1998) Green chemistry: theory and practice. Oxford Univ. Press, Oxford

    Google Scholar 

  • Bajpai VK, Rahman A, Choi UK, Youn SJ, Kang SC (2007) Inhibitory parameters of the essential oil and various extracts of Metasequoia glyptostroboides Miki ex Hu to reduce food spoilage and food-borne pathogens. Food Chem 105:1061–1066. doi:10.1016/j.foodchem.2007.05.008

    Article  CAS  Google Scholar 

  • Bauer K, Garbe D, Surburg H (2001) Common fragance and flavor materials. Preparation, properties and uses, 4th edn. Wiley-VCH-Verlag, Mörlenbach

    Book  Google Scholar 

  • Berger RG (ed) (2007) Flavours and Fragances-chemistry, bioprocessing and Sustainnability. Springer-Verlag, Berlin

    Google Scholar 

  • Berger RG (2009) Biotechnology of flavours—the next generation. Biotechnol Lett 31:1651–1659. doi:10.1007/s10529-009-0083-5

    Article  CAS  PubMed  Google Scholar 

  • Bernardes WA, Lucarini R, Tozatti MG, Flauzino LG, Souza MG, Turatti IC, Andrade e Silva ML, Martins CH, da Silva Filho AA, Cunha WR (2010) Antibacterial activity of the essential oil from Rosmarinus officinalis and its major components against oral pathogens. Z Naturforsch C 65:588–593. doi:10.1515/znc-2010-9-1009

  • Bhatti HN, Khan SS, Khan A, Rani M, Ahmad VU, Choudhary MI (2014) Biotransformation of monoterpenoids and their antimicrobial activities. Phytomedicine 21:1597–1626. doi:10.1016/j.phymed.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  • Bicas JL (2009) Estudos de obtenção de bioaroma pela biotransformação de compostos terpênicos. Doctoral Thesis, Universidade Estadual de Campinas

  • Bicas JL, Dionísio AP, Pastore GM (2009) Bio-oxidation of terpenes: an approach for the flavor industry. Chem Rev 109:4518–4531. doi:10.1021/cr800190y

    Article  CAS  PubMed  Google Scholar 

  • Bicas JL, Fontanille P, Pastore GM, Larroche C (2008) Characterization of monoterpene biotransformation in two pseudomonads. J Appl Microbiol 105:1991–2001. doi:10.1111/j.1365-2672.2008.03923.x

    Article  CAS  PubMed  Google Scholar 

  • Boontawan A, Stuckey DC (2006) A membrane bioreactor for the biotransformation of α-pinene oxide to isonovalal by Pseudomonas fluorescens NCIMB 11671. Appl Microbiol Biotechnol 69:643–649. doi:10.1007/s00253-005-0025-7

    Article  CAS  PubMed  Google Scholar 

  • Borges KB, Borges W d S, Durán-Patrón R, Pupo MT, Bonato PS, Collado IG (2009) Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron Asymmetry 20:385–397. doi:10.1016/j.tetasy.2009.02.009

    Article  CAS  Google Scholar 

  • Brenna E, Fuganti C, Serra S, Baudelaire C, Fleurs L (2003) Enantioselective perception of chiral odorants. Tetrahedron Asymmetry 14:1–42. doi:10.1016/S0957-4166(02)00713-9

    Article  CAS  Google Scholar 

  • Burdock GA (2010) Fenaroli’s handbook of flavor ingredients, 6nd edn. Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Burfield AG, Best DJ, Davis KJ (1989) Production of 2–methyl–5–isopropylhexa–2,5–dien–1–al and of 2–methyl–5–isopropyl–hexa–2,4–dien–1–al in microorganisms. Eur Pat Appl 304318

  • Chatterjee T, Bhattacharyya DK (1999) Microbial oxidation of α–pinene to (+)–α–terpineol by Candida tropicalis. Indian J Chem 38B:515–517. doi:10.1017/CBO9781107415324.004

    CAS  Google Scholar 

  • Chen W, Liu Y, Li M, Mao J, Zhang L, Huang R, Jin X, Ye L (2015) Anti-tumor effect of alpha-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J Pharmacol Sci 127:332–338. doi:10.1016/j.jphs.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  • Choi IY, Lim JH, Hwang S, Lee JC, Cho GS, Kim WK (2010) Anti-ischemic and anti-inflammatory activity of (S)-cis-verbenol. Free Radic Res 44:541–551. doi:10.3109/10715761003667562

    Article  CAS  PubMed  Google Scholar 

  • Colocousi A, Saqib KM, Leak DJ (1996) Mutants of Pseudomonas fluorescens NCIMB 11671 defective in the catabolism of α-pinene. Appl Microbiol Biotechnol 45:822–830. doi:10.1007/s002530050769

    Article  CAS  Google Scholar 

  • Daugsch A, Pastore G (2005) Production of vanillin: a biotechnological opportunity. Quim Nov. 28:642–645. doi:10.1590/S0100-40422005000400017

  • De Carvalho CCCR, Da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142. doi:10.1016/j.biotechadv.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  • Deepthi Priya K, Petkar M, Chowdary GV (2015a) Bio production of aroma compounds from alpha pinene by novel strains. Int J Biol Sci Appl 2:15–19

    Google Scholar 

  • Deepthi Priya K, Petkar MV, Chowdary GV (2015b) Microbial biotransformation of α–(+)–pinene by newly identified strain of Gluconobacter japonicus MTCC 12284. Int J Dev Res 5:5270–5275

    Google Scholar 

  • Dias CN, Rodrigues KAF, Carvalho FAA, Carneiro SMP, Maia JGS, Andrade EHA, Moraes DFC (2013) Molluscicidal and leishmanicidal activity of the leaf essential oil of Syzygium cumini (L.) Skeels from Brasil. Chem Biodivers 10:1133–1141. doi:10.1002/cbdv.201200292

    Article  CAS  PubMed  Google Scholar 

  • Duetz WA, Bouwmeester H, van Beilen JB, Witholt B (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61:269–277. doi:10.1007/s00253-003-1221-y

    Article  CAS  PubMed  Google Scholar 

  • Farooq A, Atta-Ur-Rahman BSP, Choudhary M (2004) Fungal transformation of monoterpenes. Curr Org Chem 8:353–366. doi:10.2174/1385272043485945

    Article  CAS  Google Scholar 

  • Farooq A, Choudhary MI, Tahara S, Rahman A, Başer KHC, Demirci F (2002) The microbial oxidation of (−)-beta-pinene by Botrytis cinerea. Z Naturforsch C 57:686–690. doi:10.1515/znc-2002-7-823

    CAS  PubMed  Google Scholar 

  • Fontanille P, Larroche C (2003) Optimization of isonovalal production from alpha-pinene oxide using permeabilized cells of Pseudomonas rhodesiae CIP 107491. Appl Microbiol Biotechnol 60:534–540. doi:10.1007/s00253-002-1164-8

    Article  CAS  PubMed  Google Scholar 

  • Fontanille P, Le Fleche A, Larroche C (2002) Pseudomonas rhodesiae PF1: a new and efficient biocatalyst for production of isonovalal from alpha-pinene oxide. Biocatal Biotransformation 20:413–421. doi:10.1080/1024242021000058702

    Article  CAS  Google Scholar 

  • Gavrilov VV, Startseva VA, Nikitina LE, Lodochnikova OA, Gnezdilov OI, Lisovskaya SA, Clushko NI, Klimovitskii EN (2010) Synthesis and antifungal activity of sulfides, sulfoxides, and sulfones based on (1 s)-(−)-β-pinene. Pharm Chem J 44:126–129. doi:10.1007/s11094-010-0413-x

    Article  CAS  Google Scholar 

  • Gibbon GH, Pirt SJ (1971) The degradation of α-pinene by Pseudomonas PX1. FEBS Lett 18:103–105. doi:10.1016/0014-5793(71)80418-0

    Article  CAS  PubMed  Google Scholar 

  • Griffiths ET, Bociek SM, Harries PC, Jeffcoat R, Sissons DJ, Trudgill PW (1987) Bacterial metabolism of α-Pinene : pathway from α-pinene oxide to acyclic metabolites in Nocardia sp. strain P18.3. J Bacteriol 169:4972–4979. doi:10.1128/jb.169.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman-Gutierrez SL, Bollina-Jaime H, Gomez-Cansino R, Reyes-Chilpa R (2015) Linalool and β–pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci 128:24–29. doi:10.1016/j.lfs.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Gutierrez SL, Gomez-Cansino R, Garcia-Zebadua JC, Jimenez-Perez NC, Reyes-Chilpa R (2012) Antidepressant activity of Litsea glaucescens essential oil: identification of beta-pinene and linalool as active principles. J Ethnopharmacol 143:673–679. doi:10.1016/j.jep.2012.07.026

    Article  CAS  PubMed  Google Scholar 

  • Haselton AT, Acevedo A, Kuruvilla J, Werner E, Kiernan J, Dhar P (2015) Repellency of α–pinene against the house fly, Musca domestica. Phytochemistry 117:469–475. doi:10.1016/j.phytochem.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  • IBGE (2013) Produção da Extração Vegetal e da Silvicultura 2013. http://www.ibge.gov.br/home/estatistica/economia/pevs/2013/default_pdf.shtm. Accessed 1 Jun 2015

  • Janssens L, De Pooter HL, Schamp NM, Vandamme EJ (1992) Production of flavours by microorganisms. Process Biochem 27:195–215. doi:10.1016/0032-9592(92)80020-4

    Article  CAS  Google Scholar 

  • Kang Q, Jiang CY, Fujita T, Kumamoto E (2015) Spontaneous L-glutamate release enhancement in rat substantia gelatinosa neurons by (−)-carvone and (+)-carvone which activate different types of TRP channel. Biochem Biophys Res Commun 459:498–503. doi:10.1016/j.bbrc.2015.02.135

    Article  CAS  PubMed  Google Scholar 

  • Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8. doi:10.1007/s002530051129

    Article  CAS  PubMed  Google Scholar 

  • Krings U, Lehnert N, Fraatz MA, Hardebusch B, Zorn H, Berger RG (2009) Autoxidation versus biotransformation of a-pinene to flavors with Pleurotus sapidus: regioselective hydroperoxidation of a-pinene and stereoselective dehydrogenation of verbenol. J Agric Food Chem 57:9944–9950. doi:10.1021/jf901442q

    Article  CAS  PubMed  Google Scholar 

  • Kuo CF, Su JD, Chiu CH, Peng CC, Chang CH, Sung TY, Huang SH, Lee WC, Chyau CC (2011) Anti-inflammatory effects of supercritical carbon dioxide extract and its isolated carnosic acid from Rosmarinus officinalis leaves. J Agric Food Chem 59:3674–3685. doi:10.1021/jf104837w

    Article  CAS  PubMed  Google Scholar 

  • Leite AM, Lima EO, Souza EL, Diniz MFFM, Trajano VN, Medeiros IA (2007) Inhibitory effect of β-pinene, α–pinene and eugenol on the growth of potential infectious endocarditis causin gram-positive bacteria. Rev Bras Ciências Farm 43:121–126. doi:10.1590/S1516-93322007000100015

    Article  CAS  Google Scholar 

  • Leuenberger HGW (1990) Biotransformation—a useful tool in organic chemistry. Pure Apllied Chem 62:753–768

    CAS  Google Scholar 

  • Linares D, Fontanille P, Larroche C (2009) Exploration of α-pinene degradation pathway of Pseudomonas rhodesiae CIP 107491. Application to novalic acid production in a bioreactor. Food Res Int 42:461–469. doi:10.1016/j.foodres.2008.12.001

    Article  CAS  Google Scholar 

  • Linares D, Martinez D, Fontanille P, Larroche C (2008) Production of trans-2-methyl-5-isopropylhexa-2,5-dienoic acid by Pseudomonas rhodesiae CIP 107491. Bioresour Technol 99:4590–4596. doi:10.1016/j.biortech.2007.07.029

    Article  CAS  PubMed  Google Scholar 

  • Lindmark-Henriksson M (2003) Biotransformations of turpentine constituents: oxygenation and esterification. Doctoral Thesis, Mid Sweden University

  • Lindmark-Henriksson M, Isaksson D, Sjödin K, Högberg H-E, Vanek T, Valterová I (2003) Transformation of alpha-pinene using Picea abies suspension culture. J Nat Prod 66:337–343. doi:10.1021/np020426m

    Article  CAS  PubMed  Google Scholar 

  • Lindmark-Henriksson M, Isaksson D, Vaněk T, Valterová I, Högberg HE, Sjödin K (2004) Transformation of terpenes using a Picea abies suspension culture. J Biotechnol 107:173–184. doi:10.1016/j.jbiotec.2003.10.009

    Article  CAS  PubMed  Google Scholar 

  • Longo MA, Sanromán MA (2006) Production of food aroma compounds: microbial and enzymatic methodologies. Food Technol Biotechnol 44:335–353

    CAS  Google Scholar 

  • Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future nature food colorants? Trends Biotechnol 28:300-307. doi: 10.1016/j.tibtech.2010.03.004

  • Maróstica MR (2006) Biotransformação de terpenos para a produção de compostos de aroma e funcionais. Doctoral Thesis, Universidade Estadual de Campinas

  • Maróstica MR, Pastore GM (2007a) Production of R-(+)-α-terpineol by the biotransformation of limonene from Orange essential oil, using cassava waste water as medium. Food Chem 101:345–350. doi:10.1016/j.foodchem.2005.12.056

    Article  Google Scholar 

  • Maróstica MR, Pastore GM (2007b) Biotransformação de limoneno: Uma revisão das principais rotas metabólicas. Quim Nov. 30:382–387. doi:10.1590/S0100-40422007000200027

  • Maróstica Junior MR, Silva Thomaz AA, Rocha Franchi GC, Nowilld A, Pastore GM, Hyslopc S (2009) Antioxidant potential of aroma compounds obtained by limonene biotransformation of orange essential oil. Food Chem 116:8–12. doi:10.1016/j.foodchem.2009.01.084

    Article  Google Scholar 

  • Martinez-Velazquez M, Rosario-Cruz R, Castilho-Herrera G, Flores-Fernandez JM, Alvarez AH, Lugo-Cervantes E (2011) Acaricidal effect of essential oils from Lippia graveolens (Lamiales: Verbenaceae), Rosmarinus officinalis (Lamiales: Lamiaceae), and Allium sativum (Liliales: Liliaceae) against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). J Med Entomol 48:822–827. doi:10.1603/ME10140

    Article  CAS  PubMed  Google Scholar 

  • Matsuo AL, Figueiredo CR, Arruda DC, Pereira FV, Scutti JAB, Massaoka MH, Travassos LR, Sartorelli P, Lago JHG (2011) α–Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem Biophys Res Commun 411:449–454. doi:10.1016/j.bbrc.2011.06.176

    Article  CAS  PubMed  Google Scholar 

  • Matthews RF, Braddock RJ (1987) Recovery and application of essential oils from oranges. Food Technol 41:57–61

    CAS  Google Scholar 

  • Molina G, Bicas JL, Maróstica MR, Pastore GM (2012) Compostos de Aroma. In: Biotecnologia de Alimentos, p 273–296

  • Molina G, Bution ML, Bicas JL, Dolder MAH, Pastore GM (2015) Comparative study of the bioconversion process using R-(+)- and S-(−)-limonene as substrates for Fusarium oxysporum 152B. Food Chem 174:606–613. doi:10.1016/j.foodchem.2014.11.059

    Article  CAS  PubMed  Google Scholar 

  • Molina G, Pimentel MR, Pastore GM (2013) Pseudomonas: a promising biocatalyst for the bioconversion of terpenes. Appl Microbiol Biotechnol 97:1851–1864. doi:10.1007/s00253-013-4701-8

    Article  CAS  PubMed  Google Scholar 

  • Muruganathan U, Srinivasan S, Indumathi D (2015) Antihyperglycemic effect of carvone: effect on the levels of glycoprotein components in streptozotocin-induced diabetic rats. J Acute Dis 2:310–315. doi:10.1016/S2221-6189(13)60150-X

    Article  Google Scholar 

  • Nam SY, Chung CK, Seo JH, Kim HM, Jeong HJ (2014) The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis. Int Immunopharmacol 23:273–282. doi:10.1016/j.intimp.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  • Narushima H, Omori T, Minoda Y (1982) Microbial transformation of α-pinene. Eur J Appl Microbiol Biotechnol 16:174–178. doi:10.1007/BF00505828

    Article  CAS  Google Scholar 

  • Nikolić B, Vasilijević B, Mitić-Ćulafić D, Vuković-Gačić B, Kneževic-Vulćević J (2015) Comparative study of genotoxic, antigenotoxic and cytotoxic activities of monoterpenes camphor, eucalyptol and thujone in bacteria and mammalian cells. Chem Biol Interact 242:263–271. doi:10.1016/j.cbi.2015.10.012

    Article  PubMed  Google Scholar 

  • Nogoceke F, Barcaro IMR, Sousa DP, Andreatini R (2016) Antimanic-like effects of (R)-(−)-carvone and (S)-(+)-carvone in mice. Neurosci Lett 619:43–48. doi:10.1016/j.neulet.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Socol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80. doi:10.1016/S0960-8524(99)00142-X

    Article  CAS  Google Scholar 

  • Paulino BN (2014) Otimização de processos biotecnológicos para a produção de compostos de aroma a partir de substratos monoterpênicos. Dissertation, Universidade Estadual de Campinas

  • Peixoto MG, Costa-Júnior LM, Blank AF, Lima AS, Menezes TSA, Santos DA, Alves PB, Calvacanti SCH, Bacci L, Arrigoni-Blank MF (2015) Acaricidal activity of essential oils from Lippia alba genotypes and its major components carvone, limonene, and citral against Rhipicephaluc microplus. Vet Parasitol 210:118–122. doi:10.1016/j.vetpar.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  • Prema BR, Bhattacharyya PK (1962) Microbiological transformation of terpenes: II. Transformation of alpha-pinene. Appl Microbiol 10:524–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajeswara Rao BR, Rajput DK, Mallavarapu GR (2011) Chemical diversity in curry leaf (Murraya koenigii) essential oils. Food Chem 126:989–994. doi:10.1016/j.foodchem.2010.11.106

    Article  CAS  Google Scholar 

  • Rodrigues KAF, Amorim LV, Dias CN, Moraes DFC, Carneiro SMP, Carvalho FAA (2015) Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J Ethnopharmacol 160:32–40. doi:10.1016/j.jep.2014.11.024

    Article  CAS  PubMed  Google Scholar 

  • Rottava I, Cortina PF, Zanella CA, Cansian RL, Toniazzo G, Treichel H, Antunes OAC, Oestreicher EG, De Oliveira D (2010a) Microbial oxidation of (−)-α-pinene to verbenol production by newly isolated strains. Appl Biochem Biotechnol 162:2221–2231. doi:10.1007/s12010-010-8996-y

    Article  CAS  PubMed  Google Scholar 

  • Rottava I, Toniazzo G, Cortina PF, Martello E, Grando CE, Lerin LA, Treichel H, Mossi AJ, De Oliveira D, Cansian RL, Antunes OAC, Oestreicher EG (2010b) Screening of microorganisms for bioconversion of (−)β-pinene and R-(+)-limonene to α-terpineol. LWT - Food Sci Technol 43:1128–1131. doi:10.1016/j.lwt.2010.03.001

    Article  CAS  Google Scholar 

  • Rozenbaum HF, Patitucci ML, Antunes OAC, Pereira N (2006) Production of aromas and fragrances through microbial oxidation of monoterpenes. Brazilian J Chem Eng 23:273–279. doi:10.1590/S0104-66322006000300001

    Article  CAS  Google Scholar 

  • Sarmiento GP, Rouge PD, Fabian L, Vega D, Ortuno RM, Moltrasio GY, Moglioni AG (2011) Efficient synthesis of chiral Δ2-1,3,4-thiadiazolines from α-pinene and verbenone. Tetrahedron Asymmetry 22:1924–1929. doi:10.1016/j.tetasy.2011.10.016

    Article  CAS  Google Scholar 

  • Savithiry N, Gage D, Fu W, Oriel P (1998) Degradation of pinene by Bacillus pallidus BR425. Biodegradation 9:337–341. doi:10.1023/A:1008304603734

    Article  CAS  PubMed  Google Scholar 

  • Schrader J (2007) Microbial flavor production. In: Berger RG (ed) Flavours and Fragances-chemistry, bioprocessing and sustainability. Springer, Berlin Heidelberg

    Google Scholar 

  • Scollard J, McManamon O, Schmalenberger A (2016) Inhibition of Listeria monocytogenes growth on fresh-cut produce with thyme essential oil and essential oil compound verbenone. Postharvest Biol Technol 120:61–68. doi:10.1016/j.postharvbio.2016.05.005

    Article  CAS  Google Scholar 

  • Serra S, Fuganti C, Brenna E (2005) Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol 23:193–198. doi:10.1016/j.tibtech.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  • Siddhardha B, Vijay Kumar M, Murty USN, Ramanjaneyulu GS, Prabhakar S (2012) Biotransformation of α-pinene to terpineol by resting cell suspension of Absidia corulea. Indian J Microbiol 52:292–294. doi:10.1007/s12088-011-0155-9

    Article  CAS  PubMed  Google Scholar 

  • Silva ACR, Lopes PM, Azevedo MMB, Costa DCM, Alviano CS, Alviano DS (2012) Biological activities of α–pinene and β-pinene enantiomers. Molecules 17:6305–6316. doi:10.3390/molecules17066305

    Article  PubMed  Google Scholar 

  • Souza FVM, Rocha MB, Souza DP, Marçal RM (2013) (−)-Carvone: antispasmodic effect and mode of action. Fitoterapia 85:20–24. doi:10.1016/j.fitote.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  • Tan Q, Day DF (1998) Organic co-solvent effects on the bioconversion of (R)-(+)-limonene to (R)-(+)-α-terpineol. Process Biochem 33:755–761. doi:10.1016/S0032-9592(98)00046-6

    Article  CAS  Google Scholar 

  • Thomas J (2014) Food additives—a growing global market. In: Leatherhead Food Res. http://www.foodsciencematters.com/wp-content/uploads/2014/10/Food-Additives-White-Paper-Leatherhead-Food-Research-2014.pdf. Accessed 26 Jun 2015

  • Toniazzo G, de Oliveira D, Dariva C, Oestreicher EG, Antunes OAC (2005) Biotransformation of (−)betapinene by Aspergillus niger ATCC 9642. Appl Biochem Biotechnol 121–124:837–844. doi:10.1385/ABAB:123:1-3:0837

  • Trytek M, Jedrzejewski K, Fiedurek J (2015) Bioconversion of α-pinene by a novel cold-adapted fungus Chrysosporium pannorum. J Ind Microbiol Biotechnol 42:181–188. doi:10.1007/s10295-014-1550-0

    Article  CAS  PubMed  Google Scholar 

  • Tudroszen NJ, Kelly DP, Millis NF (1977) α-Pinene metabolism by Pseudomonas putida. Biochem J 168:315–318. doi:10.1042/bj1680315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UBIC (2014) The world biotech flavour market. http://www.ubic-consulting.com/template/fs/Biotech%20Flavor.pdf. Accessed 24 Jun 2015

  • van der Werf M, de Bont J, Leak D (1997) Opportunities in microbial biotransformation of monoterpenes. Adv Biochem Eng Biotechnol 55:147–177. doi:10.1007/BFb0102065

    Google Scholar 

  • Van Dyk MS, Van Rensburg E, Moleleki N (1998) Hydroxylation of (+)limonene, (−)α-pinene and (−)β-pinene by a Hormonema sp. Biotechnol Lett 20:431–436. doi:10.1023/A:1005399918647

  • Vandamme EJ, Soetaert W (2002) Bioflavours and fragrances via fermentation and biocatalysis. J Chem Technol Biotechnol 77:1323–1332. doi:10.1002/jctb.722

    Article  CAS  Google Scholar 

  • Vanĕk T, Halík J, Vanková R, Valterová I (2005) Formation of trans-verbenol and verbenone from α-pinene catalysed by immobilised Picea abies cells. Biosci Biotechnol Biochem 69:321–325. doi:10.1271/bbb.69.321

    Article  PubMed  Google Scholar 

  • Vidya CM, Agrawal R (2003) Production of verbenol, a high valued food flavourant from a fusant strain of Aspergillus niger. Appl Microbiol Biotechnol 62:421–422. doi:10.1007/s00253-003-1329-0

    Article  CAS  PubMed  Google Scholar 

  • Welsh FW (1994) Overview of bioprocess flavor and fragrance production. In: Gabelman A (ed) Bioprocess production of flavor, fragance, and color ingredients. Wiley, New York

    Google Scholar 

  • Wender PA, Floreancig PE, Glasst TE, Natchus MG, Shuker AJ, Sutton JC (1995) Toward the synthesis of taxol and its analogs: incorporation of non-aromatic C-rings in the pinene pathway. Tetrahedron Lett 36:4939–4942. doi:10.1016/0040-4039(95)00897-L

    Article  CAS  Google Scholar 

  • Wright SJ, Caunt P, Carter D, Baker PB (1986) Microbial oxidation of alpha-pinene by Serratia marcescens. Appl Microbiol Biotechnol 23:224–227. doi:10.1007/BF00261919

    Article  CAS  Google Scholar 

  • Yoo SK, Day DF (2002) Bacterial metabolism of α- and β-pinene and related monoterpenes by Pseudomonas sp. strain PIN. Process Biochem 37:739–745. doi:10.1016/S0032-9592(01)00262-X

    Article  CAS  Google Scholar 

  • Yoo SK, Day DF, Cadwallader KR (2001) Bioconversion of α- and β-pinene by Pseudomonas sp. strain PIN. Process Biochem 36:925–932. doi:10.1016/S0032-9592(00)00248-X

    Article  CAS  Google Scholar 

  • Zorn H, Neuser F, Berger RG (2004) Degradation of α-pinene oxide and [2H7]-2,5,6- trimethyl-hept-(2E)-enoic acid by Pseudomonas fluorescens NCIMB 11761. J Biotechnol 107:255–263. doi:10.1016/j.jbiotec.2003.10.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Process number 460897/2014-4) and Fundação de Amparo a Pesquisa do Estado de Minas Gerais.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Molina.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vespermann, K.A.C., Paulino, B.N., Barcelos, M.C.S. et al. Biotransformation of α- and β-pinene into flavor compounds. Appl Microbiol Biotechnol 101, 1805–1817 (2017). https://doi.org/10.1007/s00253-016-8066-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8066-7

Keywords

Navigation