Skip to main content
Log in

Sodium ions activated phosphofructokinase leading to enhanced d-lactic acid production by Sporolactobacillus inulinus using sodium hydroxide as a neutralizing agent

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sporolactobacillus inulinus is a superior d-lactic acid-producing bacterium and proposed species for industrial production. The major pathway for d-lactic acid biosynthesis, glycolysis, is mainly regulated via the two irreversible steps catalyzed by the allosteric enzymes, phosphofructokinase (PFK) and pyruvate kinase. The activity level of PFK was significantly consistent with the cell growth and d-lactic acid production, indicating its vital role in control and regulation of glycolysis. In this study, the ATP-dependent PFK from S. inulinus was expressed in Escherichia coli and purified to homogeneity. The PFK was allosterically activated by both GDP and ADP and inhibited by phosphoenolpyruvate; the addition of activators could partly relieve the inhibition by phosphoenolpyruvate. Furthermore, monovalent cations could enhance the activity, and Na+ was the most efficient one. Considering this kind activation, NaOH was investigated as the neutralizer instead of the traditional neutralizer CaCO3. In the early growth stage, the significant accelerated glucose consumption was achieved in the NaOH case probably for the enhanced activity of Na+-activated PFK. Using NaOH as the neutralizer at pH 6.5, the fermentation time was greatly shortened about 22 h; simultaneously, the glucose consumption rate and the d-lactic acid productivity were increased by 34 and 17%, respectively. This probably contributed to the increased pH and Na+-promoted activity of PFK. Thus, fermentations by S. inulinus using the NaOH neutralizer provide a green and highly efficient d-lactic acid production with easy subsequent purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen HW, Solem C, Hammer K, Jensen PR (2001) Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux. J Bacteriol 183:3458–3467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai ZZ, Gao Z, He BF, Wu B (2015) Effect of lignocellulose-derived inhibitors on the growth and D-lactic acid production of Sporolactobacillus inulinus YBS1-5. Bioprocess Biosyst Eng 38:1993–2001

    Article  CAS  PubMed  Google Scholar 

  • Bai ZZ, Gao Z, Sun JD, Wu B, He BF (2016) D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. Bioresour Technol 207:346–352

    Article  CAS  PubMed  Google Scholar 

  • Belouski E, Watson DE, Bennett GN (1998) Cloning, sequence, and expression of the phosphofructokinase gene of Clostridium acetobutylicum ATCC 824 in Escherichia coli. Curr Microbiol 37:17–22

    Article  CAS  PubMed  Google Scholar 

  • Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Branny P, de La Torre F, Garel JR (1996) The genes for phosphofructokinase and pyruvate kinase of Lactobacillus delbrueckii subsp. bulgaricus constitute an operon. J Bacteriol 178:4727–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes M, Zhu X, Younathan ES, Chang SH (1994) Kinetic characteristics of phosphofructokinase from Bacillus stearothermophilus: MgATP nonallosterically inhibits the enzyme. Biochemistry 33:3424–3431

    Article  CAS  PubMed  Google Scholar 

  • Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biot 81:1119–1129

    Article  CAS  Google Scholar 

  • Ding ZJ, Bai ZZ, Sun ZH, Ouyang PK, He BF (2004) Study on fermentative production of D(-)-lactic acid from glucose by Sporolactobacillus sp. Chin J Bioprocess Eng 2:30–36

    CAS  Google Scholar 

  • Fothergill-Gilmore LA, Michels PA (1993) Evolution of glycolysis. Prog Biophys Mol Biol 59:105–235

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Ma CQ, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29:930–939

    Article  CAS  PubMed  Google Scholar 

  • Gohara DW, Di Cera E (2016) Molecular mechanisms of enzyme activation by monovalent cations. J Biol Chem. doi:10.1074/jbc.R116.737833

    Google Scholar 

  • Gong YH, Li TY, Li SY, Jiang ZY, Yang Y, Huang JL, Liu ZB, Sun HX (2016) Achieving high yield of lactic acid for antimicrobial characterization in cephalosporin resistance Lactobacillus by the co-expression of the phosphofructokinase and glucokinase. J Microbiol Biotechnol 26:1148–1161

    Article  CAS  PubMed  Google Scholar 

  • Le Bras G, Deville-Bonne D, Garel JR (1991) Purification and properties of the phosphofructokinase from Lactobacillus bulgaricus. A non-allosteric analog of the enzyme from Escherichia coli. Eur J Biochem 198:683–687

    Article  CAS  PubMed  Google Scholar 

  • Llanos RM, Harris CJ, Hillier AJ, Davidson BE (1993) Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase. J Bacteriol 175:2541–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig H, Homuth G, Schmalisch M, Dyka FM, Hecker M, Stülke J (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41:409–422

    Article  CAS  PubMed  Google Scholar 

  • Mosser R, Reddy MCM, Bruning JB, Sacchettini JC, Reinhart GD (2012) Structure of the Apo form of Bacillus stearothermophilus phosphofructokinase. Biochemistry 51:769–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano S, Ugwu CU, Tokiwa Y (2012) Efficient production of D-(-)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresour Technol 104:791–794

  • Paricharttanakul NM, Ye S, Menefee AL, Javid-Majd F, Sacchettini JC, Reinhart GD (2005) Kinetic and structural characterization of phosphofructokinase from Lactobacillus bulgaricus. Biochemistry 44:15280–15286

    Article  CAS  PubMed  Google Scholar 

  • Poorman RA, Randolph A, Kemp RG, Heinrikson RL (1984) Evolution of phosphofructokinase—gene duplication and creation of new effector sites. Nature 309:467–469

    Article  CAS  PubMed  Google Scholar 

  • Qin JY, Wang XW, Zheng ZJ, Ma CQ, Tang HZ, Xu P (2010) Production of L-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresour Technol 101:7570–7576

    Article  CAS  PubMed  Google Scholar 

  • Riley-Lovingshimer MR, Reinhart GD (2005) Examination of MgATP binding in a tryptophan-shift mutant of phosphofructokinase from Bacillus stearothermophilus. Arch Biochem Biophys 436:178–186

    Article  CAS  PubMed  Google Scholar 

  • Riley-Lovingshimer MR, Ronning DR, Sacchettini JC, Reinhart GD (2002) Reversible ligand-induced dissociation of a tryptophan-shift mutant of phosphofructokinase from Bacillus stearothermophilus. Biochemistry 41:12967–12974

    Article  CAS  PubMed  Google Scholar 

  • Shirakihara Y, Evans PR (1988) Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J Mol Biol 204:973–994

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wang Y, Wu B, Bai Z, He B (2015) Enhanced production of D-lactic acid by Sporolactobacillus sp.Y2-8 mutant generated by atmospheric and room temperature plasma. Biotechnol Appl Biochem 62:287–292

    Article  CAS  PubMed  Google Scholar 

  • Tlapak-Simmons VL, Reinhart GD (1994) Comparison of the inhibition by phospho(enol)pyruvate and phosphoglycolate of phosphofructokinase from B. stearothermophilus. Arch Biochem Biophys 308:226–230

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    Article  CAS  PubMed  Google Scholar 

  • Valdez BC, French BA, Younathan ES, Chang SH (1989) Site-directed mutagenesis in Bacillus stearothermophilus fructose-6-phosphate 1-kinase. Mutation at the substrate-binding site affects allosteric behavior. J Biol Chem 264:131–135

    CAS  PubMed  Google Scholar 

  • Xu TT, Bai ZZ, Wang LJ, He BF (2010) Breeding of D (–)-lactic acid high producing strain by low-energy ion implantation and preliminary analysis of related metabolism. Appl Biochem Biotechnol 160:314–321

    Article  CAS  PubMed  Google Scholar 

  • Yon J, Fried M (1989) Precise gene fusion by PCR. Nucleic Acids Res 17:4895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Su F, Wang LM, Xu K, Zhao B, Xu P (2011) Draft genome sequence of Sporolactobacillus inulinus strain CASD, an efficient D-lactic acid-producing bacterium with high-concentration lactate tolerance capability. J Bacteriol 193:5864–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DR, Zheng L, Wu B, He BF (2016) Characterization of D-lactate-dehydrogenase isozymes from a D-lactic acid-producing bacterium Sporolactobacillus inulinus. Acta Microbiol Sin. doi:10.13343/j.cnki.wsxb.20160133

    Google Scholar 

  • Zhao B, Wang L, Li F, Hua D, Ma C, Ma Y, Xu P (2010) Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation. Bioresour Technol 101:6499–6505

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Bai ZZ, Xu TT, He BF (2012) Glucokinase contributes to glucose phosphorylation in D-lactic acid production by Sporolactobacillus inulinus Y2-8. J Ind Microbiol Biotechnol 39:1685–1692

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Bai ZZ, Xu TT, He BF (2014a) Cloning and expression of phosphofructokinase gene from Sporolactobacillus inulinus in Escherichia coli. Chin J Bioprocess Eng 12:37–42

    CAS  Google Scholar 

  • Zheng L, Xu TT, Bai ZZ, He BF (2014b) Mn2+/Mg2+-dependent pyruvate kinase from a D-lactic acid-producing bacterium Sporolactobacillus inulinus: characterization of a novel Mn2+-mediated allosterically regulated enzyme. Appl Microbiol Biotechnol 98:1583–1593

    Article  CAS  PubMed  Google Scholar 

  • Zhu LF, Xu XL, Wang LM, Dong H, Yu B, Ma YH (2015) NADP+-preferring D-lactate dehydrogenase from Sporolactobacillus inulinus. Appl Environ Microbiol 81:6294–6301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from the National High Technology Program Research and Development Program of China (2012AA022200), the National Science Foundation of China (41401284), the Natural Science Foundation of Jiangsu (BK20141456), and the Field Frontier Program of the Institute of Soil Science (ISSASIP1640).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingfang He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

.

Figure S1

(PDF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Liu, M., Sun, J. et al. Sodium ions activated phosphofructokinase leading to enhanced d-lactic acid production by Sporolactobacillus inulinus using sodium hydroxide as a neutralizing agent. Appl Microbiol Biotechnol 101, 3677–3687 (2017). https://doi.org/10.1007/s00253-017-8120-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8120-0

Keywords

Navigation