Skip to main content
Log in

PET/MRI: a different spin from under the rim

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Introduction

Hybrid imaging is now widely accepted in cancer imaging with increasing use of PET/CT in clinical practice. The advantages of MRI compared to CT with respect to radiation exposure and soft-tissue lesion contrast, as well as the possibility of performing more sophisticated assessment of tissue chemistry, have stimulated interest in the development of hybrid PET/MR imaging systems.

Objective

While PET/CT simultaneously increases diagnostic quality and patient throughput compared to PET, offsetting the higher cost of this instrumentation, PET/MRI will likely be more expensive again and is currently unlikely to be competitive in terms of throughput.

Discussion

To realize the unique potential advantages of combined PET/MRI, we believe that PET/MRI devices should be designed to be a complementary tool running in parallel with PET/CT. The use of PET/CT for whole-body screening could identify lesions requiring more detailed anatomical and biological characterization. Selection of only those patients and those lesions for which this information is critical for treatment selection and planning will provide efficient and easily justified use of what will, for the foreseeable future, be an expensive and limited resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25:2046–53.

    Article  PubMed  CAS  Google Scholar 

  2. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–79.

    PubMed  CAS  Google Scholar 

  3. Hicks RJ, Binns DS, Fawcett ME, Ware RE, Kalff V, McKenzie AF, et al. Positron emission tomography (PET): experience with a large-field-of-view three-dimensional PET scanner. Med J Aust 1999;171:529–32.

    PubMed  CAS  Google Scholar 

  4. Lau WF, Binns DS, Ware RE, Ramdave S, Cachin F, Pitman AG, et al. Clinical experience with the first combined positron emission tomography/computed tomography scanner in Australia. Med J Aust 2005;182:172–6.

    PubMed  Google Scholar 

  5. Valk PE, Pounds TR, Tesar RD, Hopkins DM, Haseman MK. Cost-effectiveness of PET imaging in clinical oncology. Nucl Med Biol 1996;23:737–43.

    Article  PubMed  CAS  Google Scholar 

  6. Hillner BE, Liu D, Coleman RE, Shields AF, Gareen IF, Hanna L, et al. The National Oncologic PET Registry (NOPR): design and analysis plan. J Nucl Med 2007;48:1901–8.

    Article  PubMed  Google Scholar 

  7. Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007;48 Suppl 1:78S–88S.

    PubMed  CAS  Google Scholar 

  8. Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR. “Anatometabolic” tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med 1993;34:1190–7.

    PubMed  CAS  Google Scholar 

  9. Vansteenkiste JF, Stroobants SG, Dupont PJ, De Leyn PR, De Wever WF, Verbeken EK, et al. FDG-PET scan in potentially operable non-small cell lung cancer: do anatometabolic PET-CT fusion images improve the localisation of regional lymph node metastases? The Leuven Lung Cancer Group. Eur J Nucl Med 1998;25:1495–501.

    Article  PubMed  CAS  Google Scholar 

  10. Cai J, Chu JC, Recine D, Sharma M, Nguyen C, Rodebaugh R, et al. CT and PET lung image registration and fusion in radiotherapy treatment planning using the chamfer-matching method. Int J Radiat Oncol Biol Phys 1999;43:883–91.

    PubMed  CAS  Google Scholar 

  11. Beyer T, Townsend DW. Putting ‘clear’ into nuclear medicine: a decade of PET/CT development. Eur J Nucl Med Mol Imaging 2006;33:857–61.

    Article  PubMed  Google Scholar 

  12. Quon A, Napel S, Beaulieu CF, Gambhir SS. “Flying through” and “flying around” a PET/CT scan: pilot study and development of 3D integrated 18F-FDG PET/CT for virtual bronchoscopy and colonoscopy. J Nucl Med 2006;47:1081–7.

    PubMed  Google Scholar 

  13. Wu TH, Huang YH, Lee JJ, Wang SY, Wang SC, Su CT, et al. Radiation exposure during transmission measurements: comparison between CT- and germanium-based techniques with a current PET scanner. Eur J Nucl Med Mol Imaging 2004;31:38–43.

    Article  PubMed  Google Scholar 

  14. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med 2007;357:2277–84.

    Article  PubMed  CAS  Google Scholar 

  15. Heesakkers RA, Hövels AM, Jager GJ, van den Bosch HC, Witjes JA, Raat HP, et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol 2008;9:850–6.

    Article  PubMed  CAS  Google Scholar 

  16. Meguro K, LeMestric C, Landeau B, Desgranges B, Eustache F, Baron JC. Relations between hypometabolism in the posterior association neocortex and hippocampal atrophy in Alzheimer’s disease: a PET/MRI correlative study. J Neurol Neurosurg Psychiatry 2001;71:315–21.

    Article  PubMed  CAS  Google Scholar 

  17. Borgwardt L, Hojgaard L, Carstensen H, Laursen H, Nowak M, Thomsen C, et al. Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 2005;23:3030–7.

    Article  PubMed  Google Scholar 

  18. Pauleit D, Floeth F, Hamacher K, Riemenshneider MJ, Reifenberger G, Müller HW, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005;128:678–87.

    Article  PubMed  Google Scholar 

  19. Seemann MD, Meisetschlaeger G, Gaa J, Rummeny EJ. Assessment of the extent of metastases of gastrointestinal carcinoid tumors using whole-body PET, CT, MRI, PET/CT and PET/MRI. Eur J Med Res 2006;11:58–65.

    PubMed  Google Scholar 

  20. Ruf J, Lopez Hänninen E, Böhmig M, Koch I, Denecke T, Plotkin M, et al. Impact of FDG-PET/MRI image fusion on the detection of pancreatic cancer. Pancreatology 2006;6:512–9.

    Article  PubMed  CAS  Google Scholar 

  21. Seiboth L, Van Nostrand D, Wartofsky L, Ousman Y, Jonklaas J, Butler C, et al. Utility of PET/neck MRI digital fusion images in the management of recurrent or persistent thyroid cancer. Thyroid 2008;18:103–11.

    Article  PubMed  Google Scholar 

  22. Moy L, Ponzo F, Noz ME, Maguire GO Jr, Murphy-Walcott AD, Deans AE, et al. Improving specificity of breast MRI using prone PET and fused MRI and PET 3D volume datasets. J Nucl Med 2007;48:528–37.

    Article  PubMed  Google Scholar 

  23. Marsden PK, Strul D, Keevil SF, Williams SC, Cash D. Simultaneous PET and NMR. Br J Radiol 2002;75 Spec No:S53–9.

    PubMed  Google Scholar 

  24. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006;47:639–47.

    PubMed  Google Scholar 

  25. Lucignani G. Time-of-flight PET and PET/MRI: recurrent dreams or actual realities? Eur J Nucl Med Mol Imaging 2006;33:969–71.

    Article  PubMed  Google Scholar 

  26. Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, Jattke K, Townsend D, Nahmias C, Jacob PK, Heiss WD, Calussen CD. Simultaneous MR/PET imaging of the human brain: feasibilty study. Radiology 2008;248:1028–35.

    Article  PubMed  Google Scholar 

  27. Utriainen M, Komu M, Vuorinen V, Lehikoinen P, Sonninen P, Kurkl T, et al. Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neurooncol 2003;62:329–38.

    Article  PubMed  CAS  Google Scholar 

  28. Floeth FW, Pauleit D, Wittsack HJ, Langen KJ, Reifenberger G, Hamacher K, et al. Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 2005;102:318–27.

    Article  PubMed  Google Scholar 

  29. Stadlbauer A, Prante O, Nimsky C, Solomonowitz E, Buchfelder M, Kuwert T, et al. Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2–18F-fluoroethyl)-L-tyrosine PET and proton magnetic resonance spectroscopic imaging. J Nucl Med 2008;49:721–9.

    Article  PubMed  CAS  Google Scholar 

  30. Tanenbaum LN. Clinical 3T MR imaging: mastering the challenges. Magn Reson Imaging Clin N Am 2006;14:1–15.

    Article  PubMed  Google Scholar 

  31. Schmidt GP, Reiser MF, Baur-Melnyk A. Whole-body imaging of the musculoskeletal system: the value of MR imaging. Skeletal Radiol 2007;36:1109–19.

    Article  PubMed  Google Scholar 

  32. Schmidt GP, Wintersperger B, Graser A, Baur-Melnyk A, Reiser MF, Schoenberg SO. High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study. Invest Radiol 2007;42:449–59.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney J. Hicks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicks, R.J., Lau, E.W.F. PET/MRI: a different spin from under the rim. Eur J Nucl Med Mol Imaging 36 (Suppl 1), 10–14 (2009). https://doi.org/10.1007/s00259-008-0966-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0966-z

Keywords

Navigation