Skip to main content

Advertisement

Log in

Preclinical characterization of 18F-D-FPHCys, a new amino acid-based PET tracer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The imaging potential of a new 18F-labelled methionine derivative, S-(3-[18F]fluoropropyl)-d-homocysteine (18F-D-FPHCys), and its selectivity for amino acid transporter subtypes were investigated in vitro and by imaging of human tumour xenografts.

Methods

Expression of members of the system L (LAT isoforms 1–4 and 4F2hc) and ASCT (ASCT isoforms 1 and 2) amino acid transporter subclasses were assessed by quantitative real-time PCR in four human tumour models, including A431 squamous cell carcinoma, PC3 prostate cancer, and Colo 205 and HT-29 colorectal cancer lines. The first investigations for the characterization of 18F-D-FPHCys were in vitro uptake studies by comparing it with [1-14C]-l-methionine (14C-MET) and in vivo by PET imaging. In addition, the specific involvement of LAT1 transporters in 18F-D-FPHCys accumulation was tested by silencing LAT1 mRNA transcription with siRNAs. To determine the proliferative activity in tumour xenografts ex vivo, Ki-67 staining was used as a biomarker.

Results

A431 cells showed the highest 18F-D-FPHCys uptake in vitro and in vivo followed by Colo 205, PC3 and HT-29. A similar pattern of retention was observed with 14C-MET. 18F-D-FPHCys retention was strongly correlated with LAT1 expression both in vitro (R 2 = 0.85) and in vivo (R 2 = 0.99). Downregulation of LAT1 by siRNA inhibited 18F-D-FPHCys uptake, demonstrating a clear dependence on this transporter for tumour uptake. Furthermore, 18F-D-FPHCys accumulation mirrored cellular proliferation.

Conclusion

The favourable properties of 18F-D-FPHCys make this tracer a promising imaging probe for detection of tumours as well as for the noninvasive evaluation and monitoring of tumour growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Plathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med. 2008;49 Suppl 2:43S–63S.

    Article  PubMed  CAS  Google Scholar 

  2. Kumar R, Halanaik D, Malhotra A. Clinical applications of positron emission tomography-computed tomography in oncology. Indian J Cancer. 2010;47(2):100–19.

    Article  PubMed  CAS  Google Scholar 

  3. McConathy J, Goodman MM. Non-natural amino acids for tumor imaging using positron emission tomography and single photon emission computed tomography. Cancer Metastasis Rev. 2008;27(4):555–73.

    Article  PubMed  Google Scholar 

  4. Verrey F. System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch. 2003;445(5):529–33.

    PubMed  CAS  Google Scholar 

  5. Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (system N/A) transporters of the SLC38 gene family. Pflugers Arch. 2004;447(5):784–95.

    Article  PubMed  CAS  Google Scholar 

  6. Kanai Y, Hediger MA. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch. 2004;447(5):469–79.

    Article  PubMed  CAS  Google Scholar 

  7. Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15(4):254–66.

    Article  PubMed  CAS  Google Scholar 

  8. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med. 2001;42(3):432–45.

    PubMed  CAS  Google Scholar 

  9. Kaira K, Oriuchi N, Shimizu K, Imai H, Tominaga H, Yanagitani N, et al. Comparison of L-type amino acid transporter 1 expression and L-[3-18F]-alpha-methyl tyrosine uptake in outcome of non-small cell lung cancer. Nucl Med Biol. 2010;37(8):911–6.

    Article  PubMed  CAS  Google Scholar 

  10. Okubo S, Zhen HN, Kawai N, Nishiyama Y, Haba R, Tamiya T. Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas. J Neurooncol. 2010;99(2):217–25.

    Article  PubMed  CAS  Google Scholar 

  11. Lindholm P, Leskinen-Kallio S, Grenman R, Lehikoinen P, Nagren K, Teras M, et al. Evaluation of response to radiotherapy in head and neck cancer by positron emission tomography and [11C]methionine. Int J Radiat Oncol Biol Phys. 1995;32(3):787–94.

    Article  PubMed  CAS  Google Scholar 

  12. Lapela M, Leskinen-Kallio S, Varpula M, Grenman S, Salmi T, Alanen K, et al. Metabolic imaging of ovarian tumors with carbon-11-methionine: a PET study. J Nucl Med. 1995;36(12):2196–200.

    PubMed  CAS  Google Scholar 

  13. Deloar HM, Fujiwara T, Nakamura T, Itoh M, Imai D, Miyake M, et al. Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med. 1998;25(6):629–33.

    Article  PubMed  CAS  Google Scholar 

  14. Inoue T, Tomiyoshi K, Higuichi T, Ahmed K, Sarwar M, Aoyagi K, et al. Biodistribution studies on L-3-[fluorine-18]fluoro-alpha-methyl tyrosine: a potential tumor-detecting agent. J Nucl Med. 1998;39(4):663–7.

    PubMed  CAS  Google Scholar 

  15. Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, et al. Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol. 2009;36(7):779–87.

    Article  PubMed  CAS  Google Scholar 

  16. Becherer A, Karanikas G, Szabo M, Zettinig G, Asenbaum S, Marosi C, et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging. 2003;30(11):1561–7.

    Article  PubMed  CAS  Google Scholar 

  17. McConathy J, Martarello L, Malveaux EJ, Camp VM, Simpson NE, Simpson CP, et al. Synthesis and evaluation of 2-amino-4-[(18)F]fluoro-2-methylbutanoic acid (FAMB): relationship of amino acid transport to tumor imaging properties of branched fluorinated amino acids. Nucl Med Biol. 2003;30(5):477–90.

    Article  PubMed  CAS  Google Scholar 

  18. McConathy J, Voll RJ, Yu W, Crowe RJ, Goodman MM. Improved synthesis of anti-[18F]FACBC: improved preparation of labeling precursor and automated radiosynthesis. Appl Radiat Isot. 2003;58(6):657–66.

    Article  PubMed  CAS  Google Scholar 

  19. Bourdier T, Shepherd R, Berghofer P, Jackson T, Fookes CJ, Denoyer D, et al. Radiosynthesis and biological evaluation of L- and D-S-(3-[18F]fluoropropyl)homocysteine for tumor imaging using positron emission tomography. J Med Chem. 2011;54(6):1860–70.

    Article  PubMed  CAS  Google Scholar 

  20. Tamemasa O, Goto R, Suzuki T. Preferential incorporation of some 14C-labeled D-amino acids into tumor-bearing animals. Gann. 1978;69(4):517–23.

    PubMed  CAS  Google Scholar 

  21. Huisman MC, Reder S, Weber AW, Ziegler SI, Schwaiger M. Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl Med Mol Imaging. 2007;34(4):532–40.

    Article  PubMed  Google Scholar 

  22. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, et al. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001;1514(2):291–302.

    Article  PubMed  CAS  Google Scholar 

  23. Kawasaki N, Lin CW, Inoue R, Khoo KH, Ma BY, Oka S, et al. Highly fucosylated N-glycan ligands for mannan-binding protein expressed specifically on CD26 (DPPVI) isolated from a human colorectal carcinoma cell line, SW1116. Glycobiology. 2009;19(4):437–50.

    Article  PubMed  CAS  Google Scholar 

  24. Kaira K, Oriuchi N, Otani Y, Shimizu K, Tanaka S, Imai H, et al. Fluorine-18-alpha-methyltyrosine positron emission tomography for diagnosis and staging of lung cancer: a clinicopathologic study. Clin Cancer Res. 2007;13(21):6369–78.

    Article  PubMed  CAS  Google Scholar 

  25. Miyashita G, Higuchi T, Oriuchi N, Arisaka Y, Hanaoka H, Tominaga H, et al. 18F-FAMT uptake correlates with tumor proliferative activity in oral squamous cell carcinoma: comparative study with 18F-FDG PET and immunohistochemistry. Ann Nucl Med. 2010;24(8):579–84.

    Article  PubMed  Google Scholar 

  26. Abe K, Hayashi K, Sasaki M, Koga H, Kaneko K, Sawamoto H, et al. O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) uptake in mouse thymoma cells, and its biodistribution in mice and human volunteers. Acta Radiol. 2006;47(10):1042–8.

    Article  PubMed  CAS  Google Scholar 

  27. Oka S, Hattori R, Kurosaki F, Toyama M, Williams LA, Yu W, et al. A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med. 2007;48(1):46–55.

    PubMed  CAS  Google Scholar 

  28. Leskinen-Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Joensuu H. Uptake of 11C-methionine in breast cancer studied by PET. An association with the size of S-phase fraction. Br J Cancer. 1991;64(6):1121–4.

    Article  PubMed  CAS  Google Scholar 

  29. Tsukada H, Sato K, Fukumoto D, Kakiuchi T. Evaluation of D-isomers of O-18F-fluoromethyl, O-18F-fluoroethyl and O-18F-fluoropropyl tyrosine as tumour imaging agents in mice. Eur J Nucl Med Mol Imaging. 2006;33(9):1017–24. doi:10.1007/s00259-006-0076-8.

    Article  PubMed  CAS  Google Scholar 

  30. Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R, et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med. 1995;36(3):484–92.

    PubMed  CAS  Google Scholar 

  31. Yoon JH, Kim IJ, Kim H, Kim HJ, Jeong MJ, Ahn SG, et al. Amino acid transport system L is differently expressed in human normal oral keratinocytes and human oral cancer cells. Cancer Lett. 2005;222(2):237–45.

    Article  PubMed  CAS  Google Scholar 

  32. Imai H, Kaira K, Oriuchi N, Yanagitani N, Sunaga N, Ishizuka T, et al. L-type amino acid transporter 1 expression is a prognostic marker in patients with surgically resected stage I non-small cell lung cancer. Histopathology. 2009;54(7):804–13.

    Article  PubMed  Google Scholar 

  33. Nawashiro H, Otani N, Shinomiya N, Fukui S, Ooigawa H, Shima K, et al. L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int J Cancer. 2006;119(3):484–92.

    Article  PubMed  CAS  Google Scholar 

  34. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Susan Jackson, Rachael Walker, Kerry Ardley and Jeannette Valentan for technical assistance. This study was funded by the Australian Government Cooperative Research Centre for Biomedical Imaging Development Ltd. (CRCBID), Bundoora, Victoria, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Denoyer.

Additional information

Financial support

This study was funded by the Australian Government Cooperative Research Centre for Biomedical Imaging Development Ltd (CRCBID), Bundoora, Victoria, Australia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denoyer, D., Kirby, L., Waldeck, K. et al. Preclinical characterization of 18F-D-FPHCys, a new amino acid-based PET tracer. Eur J Nucl Med Mol Imaging 39, 703–712 (2012). https://doi.org/10.1007/s00259-011-2017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-2017-4

Keywords

Navigation