Skip to main content

Advertisement

Log in

FDG PET/CT imaging in detecting and guiding management of invasive fungal infections: a retrospective comparison to conventional CT imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Invasive fungal infections (IFIs) are common in immunocompromised patients. While early diagnosis can reduce otherwise high morbidity and mortality, conventional CT has suboptimal sensitivity and specificity. Small studies have suggested that the use of FDG PET/CT may improve the ability to detect IFI. The objective of this study was to describe the proven and probable IFIs detected on FDG PET/CT at our centre and compare the performance with that of CT for localization of infection, dissemination and response to therapy.

Methods

FDG PET/CT reports for adults investigated at Peter MacCallum Cancer Centre were searched using keywords suggestive of fungal infection. Chart review was performed to describe the risk factors, type and location of IFIs, indication for FDG PET/CT, and comparison with CT for the detection of infection, and its dissemination and response to treatment.

Results

Between 2007 and 2017, 45 patients had 48 proven/probable IFIs diagnosed prior to or following FDG PET/CT. Overall 96% had a known malignancy with 78% being haematological. FDG PET/CT located clinically occult infection or dissemination to another organ in 40% and 38% of IFI patients, respectively. Of 40 patients who had both FDG PET/CT and CT, sites of IFI dissemination were detected in 35% and 5%, respectively (p < 0.001). Of 18 patents who had both FDG PET/CT and CT follow-up imaging, there were discordant findings between the two imaging modalities in 11 (61%), in whom normalization of FDG avidity of a lesion suggested resolution of active infection despite a residual lesion on CT.

Conclusion

FDG PET/CT was able to localize clinically occult infection and dissemination and was particularly helpful in demonstrating response to antifungal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tang JL, Kung HC, Lei WC, Yao M, Wu UI, Hsu SC, et al. High incidences of invasive fungal infections in acute myeloid leukemia patients receiving induction chemotherapy without systemic antifungal prophylaxis: a prospective observational study in Taiwan. PLoS One. 2015;10(6):e0128410.

    Article  Google Scholar 

  2. Pagano L, Caira M, Candoni A, Offidani M, Fianchi L, Martino B, et al. The epidemiology of fungal infections in patients with hematologic malignancies: the SEIFEM-2004 study. Haematologica. 2006;91(8):1068–75.

    PubMed  Google Scholar 

  3. Shi JM, Pei XY, Luo Y, Tan YM, Tie RX, He JS, et al. Invasive fungal infection in allogeneic hematopoietic stem cell transplant recipients: single center experiences of 12 years. J Zhejiang Univ Sci B. 2015;16(9):796–804.

    Article  CAS  Google Scholar 

  4. Biehl LM, Vehreschild JJ, Liss B, Franke B, Markiefka B, Persigehl T, et al. A cohort study on breakthrough invasive fungal infections in high-risk patients receiving antifungal prophylaxis. J Antimicrob Chemother. 2016;71(9):2634–41.

    Article  Google Scholar 

  5. Teng JC, Slavin MA, Teh BW, Lingaratnam SM, Ananda-Rajah MR, Worth LJ, et al. Epidemiology of invasive fungal disease in lymphoproliferative disorders. Haematologica. 2015;100(11):e462–6.

    Article  Google Scholar 

  6. Teh BW, Teng JC, Urbancic K, Grigg A, Harrison SJ, Worth LJ, et al. Invasive fungal infections in patients with multiple myeloma: a multi-center study in the era of novel myeloma therapies. Haematologica. 2015;100(1):e28–31.

    Article  Google Scholar 

  7. Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50(8):1091–100.

    Article  Google Scholar 

  8. Horn DL, Freifeld AG, Schuster MG, Azie NE, Franks B, Kauffman CA. Treatment and outcomes of invasive fusariosis: review of 65 cases from the PATH Alliance® registry. Mycoses. 2014;57(11):652–8.

    Article  Google Scholar 

  9. Nucci M, Marr KA, Vehreschild MJGT, de Souza CA, Velasco E, Cappellano P, et al. Improvement in the outcome of invasive fusariosis in the last decade. Clin Microbiol Infect. 2014;20(6):580–5.

    Article  CAS  Google Scholar 

  10. Marr KA, Carter RA, Boeckh M, Martin P, Corey L. Invasive aspergillosis in allogeneic stem cell transplant recipients: changes in epidemiology and risk factors. Blood. 2002;100(13):4358–66.

    Article  CAS  Google Scholar 

  11. Rolfe NE, Sandin RL, Greene JN. Scedosporium infections at a Cancer Centre over a 10-year period (2001-2010). Infect Dis Clin Pract. 2014;22(2):71–4.

    Article  Google Scholar 

  12. Farmakiotis D, Kyvernitakis A, Tarrand JJ, Kontoyiannis DP. Early initiation of appropriate treatment is associated with increased survival in cancer patients with Candida glabrata fungaemia: a potential benefit from infectious disease consultation. Clin Microbiol Infect. 2015;21(1):79–86.

    Article  Google Scholar 

  13. Gafter-Gvili A, Paul M, Bernstine H, Vidal L, Ram R, Raanani P, et al. The role of 18F-FDG PET/CT for the diagnosis of infections in patients with hematological malignancies and persistent febrile neutropenia. Leuk Res. 2013;37(9):1057–62.

    Article  Google Scholar 

  14. Morrissey CO, Chen SC, Sorrell TC, Milliken S, Bardy PG, Bradstock KF, et al. Galactomannan and PCR versus culture and histology for directing use of antifungal treatment for invasive aspergillosis in high-risk haematology patients: a randomised controlled trial. Lancet Infect Dis. 2013;13(6):519–28.

    Article  CAS  Google Scholar 

  15. Barnes PD, Marr KA. Risks, diagnosis and outcomes of invasive fungal infections in haematopoietic stem cell transplant recipients. Br J Haematol. 2007;139(4):519–31.

    Article  Google Scholar 

  16. Douglas A, Lau E, Thursky K, Slavin M. What, where and why: exploring fluorodeoxyglucose-PET’s ability to localise and differentiate infection from cancer. Curr Opin Infect Dis. 2017;30(6):552–64.

    Article  Google Scholar 

  17. Hot A, Maunoury C, Poiree S, Lanternier F, Viard JP, Loulergue P, et al. Diagnostic contribution of positron emission tomography with [18F]fluorodeoxyglucose for invasive fungal infections. Clin Microbiol Infect. 2011;17(3):409–17.

    Article  CAS  Google Scholar 

  18. Chamilos G, Macapinlac HA, Kontoyiannis DP. The use of 18F-fluorodeoxyglucose positron emission tomography for the diagnosis and management of invasive mould infections. Med Mycol. 2008;46(1):23–9.

    Article  Google Scholar 

  19. Vos FJ, Donnelly JP, Oyen WJG, Kullberg BJ, Bleeker-Rovers CP, Blijlevens NMA. 18F-FDG PET/CT for diagnosing infectious complications in patients with severe neutropenia after intensive chemotherapy for haematological malignancy or stem cell transplantation. Eur J Nucl Med Mol Imaging. 2012;39(1):120–8.

    Article  CAS  Google Scholar 

  20. Guy SD, Tramontana AR, Worth LJ, Lau E, Hicks RJ, Seymour JF, et al. Use of FDG PET/CT for investigation of febrile neutropenia: evaluation in high-risk cancer patients. Eur J Nucl Med Mol Imaging. 2012;39(8):1348–55.

    Article  Google Scholar 

  21. Koh KC, Slavin MA, Thursky KA, Lau E, Hicks RJ, Drummond E, et al. Impact of fluorine-18 fluorodeoxyglucose positron emission tomography on diagnosis and antimicrobial utilization in patients with high-risk febrile neutropenia. Leuk Lymphoma. 2012;53(10):1889–95.

    Article  CAS  Google Scholar 

  22. Mahfouz T, Miceli MH, Saghafifar F, Stroud S, Jones-Jackson L, Walker R, et al. 18F-fluorodeoxyglucose positron emission tomography contributes to the diagnosis and management of infections in patients with multiple myeloma: a study of 165 infectious episodes. J Clin Oncol. 2005;23(31):7857–63.

    Article  CAS  Google Scholar 

  23. Hofman MS, Hicks RJ. How we read oncologic FDG PET/CT. Cancer Imaging. 2016;16(1):35.

    Article  Google Scholar 

  24. Miyazaki Y, Nawa Y, Nakase K, Kohashi S, Kadohisa S, Hiraoka A, et al. FDG-PET can evaluate the treatment for fungal liver abscess much earlier than other imagings. Ann Hematol. 2011;90(12):1489–90.

    Article  Google Scholar 

  25. Xu B, Shi P, Wu H, Guo X, Wang Q, Zhou S. Utility of FDG PET/CT in guiding antifungal therapy in acute leukemia patients with chronic disseminated candidiasis. Clin Nucl Med. 2010;35(8):567–70.

    Article  Google Scholar 

  26. Wang C, Jia N, Zhang L, Liu K, Liu H, Yu H. Imaging findings of cryptococcal infection of the thoracic spine. Int J Infect Dis. 2014;29:162–5.

    Article  CAS  Google Scholar 

  27. Altini C, Niccoli Asabella A, Ferrari C, Rubini D, Dicuonzo F, Rubini G. (18)F-FDG PET/CT contribution to diagnosis and treatment response of rhino-orbital-cerebral mucormycosis. Hell J Nucl Med. 2015;18(1):68–70.

    PubMed  Google Scholar 

  28. Muller N, Kessler R, Caillard S, Epailly E, Hubele F, Heimburger C, et al. 18F-FDG PET/CT for the diagnosis of malignant and infectious complications after solid organ transplantation. Nucl Med Mol Imaging. 2017;51(1):58–68.

    Article  CAS  Google Scholar 

  29. Karunanithi S, Kumar G, Sharma SK, Jain D, Gupta A, Kumar R. Staging and response of sternal histoplasmosis by 18F-FDG PET/CT. Clin Nucl Med. 2015;40(3):231–3.

    Article  Google Scholar 

  30. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21.

    Article  Google Scholar 

  31. Avet J Jr, Granjon D, Prevot-Bitot N, Isnardi V, Berger C, Stephan JL, et al. Monitoring of systemic candidiasis by 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2009;36(11):1900.

    Article  Google Scholar 

  32. Bleeker-Rovers CP, Warris A, Drenth JPH, Corstens FHM, Oyen WJG, Kullberg BJ. Diagnosis of Candida lung abscesses by 18F-fluorodeoxyglucose positron emission tomography. Clin Microbiol Infect. 2005;11(6):493–5.

    Article  CAS  Google Scholar 

  33. Bryant AS, Cerfolio RJ. The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. Ann Thorac Surg. 2006;82(3):1016–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Douglas.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douglas, A.P., Thursky, K.A., Worth, L.J. et al. FDG PET/CT imaging in detecting and guiding management of invasive fungal infections: a retrospective comparison to conventional CT imaging. Eur J Nucl Med Mol Imaging 46, 166–173 (2019). https://doi.org/10.1007/s00259-018-4062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-4062-8

Keywords

Navigation