Skip to main content
Log in

[18F]DCFPyL PET/CT in detection and localization of recurrent prostate cancer following prostatectomy including low PSA < 0.5 ng/mL

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The primary aim of this retrospective multicenter analysis was to assess the performance of PSMA PET/CT using [18F]DCFPyL in the detection and localization of recurrent prostate cancer post radical prostatectomy (RP). Particular reference is given to low PSA groups < 0.5 ng/mL to aid discussion around the inclusion of this group in PSMA guidelines and funding pathways.

Methods

Retrospective analysis of combined PSMA database patients from centers in Australia and New Zealand. Two hundred twenty-two patients presenting with recurrence post RP were stratified into five PSA groups (ng/mL): 0–0.19, 0.2–0.49, 0.5–0.99, 1–1.99, and ≥ 2. Lesions detected by [18F]DCFPyL PET/CT were recorded as local recurrence, locoregional nodes, and metastases.

Results

Of 222 patients, 155 (69.8%) had evidence of abnormal uptake suggestive of recurrent prostate cancer. The detection efficacies for [18F]DCFPyL PET/CT were 91.7% (44/48) for PSA levels ≥ 2 ng/mL, 82.1% (23/28) for PSA levels 1–1.99 ng/mL, 62.8% (27/43) for PSA levels 0.5–0.99 ng/mL, 58.7% (54/92) for PSA levels 0.2–0.49 ng/mL, and 63.6% (7/11) for PSA levels ≤ 0.2 ng/mL. In those with PSA < 0.5 ng/mL, 47.6% (49/103) had detectable lesions, 71.4% (35/49) had disease confined to the pelvis, 22.4% (11/49) had prostate bed recurrence, 49.0% (24/49) had pelvic lymph nodes, and 28.6% (14/49) had extra pelvic disease.

Conclusion

[18F]DCFPyL PET/CT has a high detection rate in recurrence following RP even at low PSA levels with similar detection levels in the PSA subgroups < 0.5 ng/mL. Employing rigid PSA thresholds when constructing guidelines for PSMA PET/CT funding eligibility may result in a significant number of patients below such thresholds having delayed or inappropriate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

At request

References

  1. Australian Institute of Health and Welfare. Cancer in Australia. 2019. [4 August 2020]. Available from: www.aihw.gov.au/reports/cancer/cancer-in-australia-2019/contents/summary. Accessed 7 Dec 2020.

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  3. Roehl KA, Han M, Ramos CG, Antenor JAV, Catalona WJ. Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. J Urol. 2004;172:910–4.

    Article  PubMed  Google Scholar 

  4. Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 2017;71:630–42.

    Article  PubMed  Google Scholar 

  5. Kosuri S, Akhtar NH, Smith M, Osborne JR, Tagawa ST. Review of salvage therapy for biochemically recurrent prostate cancer: the role of imaging and rationale for systemic salvage targeted anti-PSMA radioimmunotherapy. Adv Urol. 2012. https://doi.org/10.1155/2012/921674.

  6. Smith CP, Laucis A, Harmon S, Mena E, Lindenberg L, Choyke PL, et al. Novel imaging in detection of metastatic prostate cancer. Curr Oncol Rep. 2019;21:31.

    Article  PubMed  Google Scholar 

  7. Tanaka T, Yang M, Froemming AT, Bryce AH, Inai R, Kanazawa S, et al. Current imaging techniques for and imaging spectrum of prostate cancer recurrence and metastasis: a pictorial review. RadioGraphics. 2020:40:709–26.

  8. Van Leeuwen PJ, Stricker P, Hruby G, Kneebone A, Ting F, Thompson B, et al. 68Ga-PSMA has a high detection rate of prostate cancer recurrence outside the prostatic fossa in patients being considered for salvage radiation treatment. BJU Int. 2016;117:732–9.

    Article  PubMed  Google Scholar 

  9. Beresford M, Gillatt D, Benson R, Ajithkumar T. A systematic review of the role of imaging before salvage radiotherapy for post-prostatectomy biochemical recurrence. J Clin Oncol. 2010;22:46–55.

    Article  CAS  Google Scholar 

  10. Cher ML, Bianco FJ, Lam JS, Davis LP, Grignon DJ, Sakr WA, et al. Limited role of radionuclide bone scintigraphy in patients with PSA elevations after radical prostatectomy. J Urol. 1998;160:1387–91.

    Article  CAS  PubMed  Google Scholar 

  11. Ghafoor S, Burger IA, Vargas AH. Multimodality imaging of prostate Cancer. J Nucl Med. 2019;60:1350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hövels A, Heesakkers R, Adang E, Jager G, Strum S, Hoogeveen Y, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63:387–95.

    Article  PubMed  Google Scholar 

  13. Memorial Sloan Kettering Cancer Center. Pre-Radical Prostatectomy. [4 August 2020]. Available from: https://www.mskcc.org/nomograms/prostate/pre_op. Accessed 7 Dec 2020.

  14. Cooperberg MR, Pasta DJ, Elkin EP, Litwin MS, Latini DM, Duchane J, et al. The UCSF Cancer of the prostate risk assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol. 2005;173:1938–42.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eifler JB, Feng Z, Lin BM, Partin MT, Humphreys EB, Han M, et al. An updated prostate cancer staging nomogram based on cases from 2006 to 2011. BJU Int. 2013;111:22–9.

    Article  PubMed  Google Scholar 

  16. Godoy G, Chong KT, Cronin A, Vickers A, Laudone V, Touijer K, et al. Extent of pelvic lymph node dissection and the impact of standard template dissection on nomogram prediction of lymph node involvement. Eur Urol. 2011;60:195–201.

    Article  PubMed  Google Scholar 

  17. Rudloff U, Jacks LM, Goldberg JI, Wynveen CA, Brogi E, Patil S, et al. Nomogram for predicting the risk of local recurrence after breast-conserving surgery for ductal carcinoma in situ. J Clin Oncol. 2010;28:3762–9.

    Article  PubMed  Google Scholar 

  18. Hope TA, Aggarwal R, Chee B, Tao D, Greene KL, Cooperberg MR, et al. Impact of 68Ga -PSMA-11 PET on management in patients with biochemically recurrent prostate cancer. J Nucl Med. 2017;58:1956–61.

    Article  CAS  PubMed  Google Scholar 

  19. Roach PJ, Francis R, Emmett L, Hsiao E, Kneebone A, Hruby G, et al. The impact of 68Ga -PSMA PET/CT on management intent in prostate cancer: results of an Australian prospective multicenter study. J Nucl Med. 2018;59:82–8.

    Article  CAS  PubMed  Google Scholar 

  20. Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of PSMA, in patients with metastatic prostate cancer. J Nucl Med. 2012;53:1883–91.

    Article  CAS  PubMed  Google Scholar 

  21. Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Czarniecki M, Mena E, Lindenberg L, Cacko M, Harmon S, Radtke JP, et al. Keeping up with the PSMA: an introduction to a new class of PET imaging agents. AME Publishing Company. 2018;7:831–43.

  23. Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017;44:678–88.

    Article  CAS  PubMed  Google Scholar 

  24. Tan N, Bavadian N, Calais J, Oyoyo U, Kim J, Turkbey IB, et al. Imaging of PSMA targeted radiotracers for the detection of prostate cancer biochemical recurrence after definitive therapy: a systematic review and meta-analysis. J Urol. 2019;202:231–40.

    Article  PubMed  Google Scholar 

  25. Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, et al. 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res. 2011;17:7645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dietlein F, Kobe C, Neubauer S, Schmidt M, Stockter S, Fischer T, et al. PSA-stratified performance of 18F-and 68Ga-PSMA PET in patients with biochemical recurrence of prostate cancer. J Nucl Med. 2017;58:947–52.

    Article  CAS  PubMed  Google Scholar 

  27. Lindenberg L, Mena E, Turkbey B, Shih JH, Reese SE, Harmon SA, et al. Evaluating biochemically recurrent prostate cancer: histologic validation of [18F]DCFPyL PET/CT with comparison to multiparametric MRI. Radiology. 2020;296:564–72.

  28. Markowski MC, Sedhom R, Fu W, Gray JCR, Eisenberger MA, Pomper MG, et al. PSA and PSA doubling time predict findings on [18F]DCFPyL PET/CT in patients with biochemically-recurrent prostate cancer. J Urol. 2020;204:496–502.

  29. Rousseau E, Wilson D, Lacroix-Poisson F, Krauze A, Chi K, Gleave M, et al. A prospective study on [18F]DCFPyL PSMA PET/CT imaging in biochemical recurrence of prostate cancer. J Nucl Med. 2019;60:1587–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rowe SP, Campbell SP, Mana-Ay M, Szabo Z, Allaf ME, Pienta KJ, et al. Prospective evaluation of PSMA-targeted [18F]DCFPyL PET/CT in men with biochemical failure after radical prostatectomy for prostate cancer. J Nucl Med. 2020;61:58–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song H, Harrison C, Duan H, Guja K, Hatami N, Franc BL, et al. Prospective evaluation of [18F]DCFPyL PET/CT in biochemically recurrent prostate cancer in an academic center: a focus on disease localization and changes in management. J Nucl Med. 2020;61:546–51.

    Article  CAS  PubMed  Google Scholar 

  32. Wondergem M, Jansen BHE, van der Zant FM, van der Sluis TM, Knol RJJ, van Kalmthout LWM, et al. Early lesion detection with [18F]DCFPyL PET/CT in 248 patients with biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2019;46:1911–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. NICE. Guidance 2019 prostate cancer: diagnosis and management. BJU Int. 2019;124:9–26.

    Google Scholar 

  34. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Prostate Cancer Version 3.2020. 2020. [7 Dec 2020]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf.

  35. New Zealand Ministry of Health. NZ National Indicators for PET-CT. Wellington: Ministry of Health; 2018.

    Google Scholar 

  36. The RCOR. Evidence-based indications for the use of PET-CT in the United Kingdom 2016. Clin Radiol. 2016;71:e171.

    Article  Google Scholar 

  37. Trabulsi EJ, Bryan, Hossein J, Hope T, Pomper M, Turkbey B, et al. Optimum imaging strategies for advanced prostate cancer. J Clin Oncol. 2020;38:1963–96.

    Article  CAS  PubMed  Google Scholar 

  38. Australian Radiation Protection and Nuclear Safety Agency. Current Australian diagnostic reference levels for nuclear medicine [31 August 2020]. Available from: www.arpansa.gov.au/research-and-expertise/surveys/national-diagnostic-reference-level-service/current-australian-drls/nm.  Accessed 7 Dec 2020.

  39. Rauscher I, Maurer T, Fendler WP, Sommer WH, Schwaiger M, Eiber M. 68 Ga-PSMA ligand PET/CT in patients with prostate cancer: how we review and report. Cancer Imaging. 2016;16:14.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yaxley JW, Raveenthiran S, Nouhaud FX, Samaratunga H, Yaxley WJ, Coughlin G, et al. Risk of metastatic disease on 68Ga-PSMA PET/CT scan for primary staging of 1253 men at the diagnosis of prostate cancer. BJU Int. 2019;124:401–7.

    Article  CAS  PubMed  Google Scholar 

  41. Boreta L, Gadzinski AJ, Wu SY, Xu M, Greene K, Quanstrom K, et al. Location of recurrence by gallium-68 PSMA-11 PET scan in prostate cancer patients eligible for salvage radiotherapy. Urology. 2019;129:165–71.

    Article  PubMed  Google Scholar 

  42. Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomäcker K, et al. Comparison of [18F]DCFPyL and 68Ga-PSMA for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol. 2015;17:575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. EAU-ESTRO-ESUR-SIOG Guidelines of Prostate Cancer. 2018. [12 September 2020]. Available from: https://uroweb.org/wp-content/uploads/EAU-ESUR-ESTRO-SIOG-Guidelines-on-Prostate-Cancer-large-text-V2.pdf.  Accessed 7 Dec 2020.

  44. Tendulkar RD, Agrawal S, Gao T, Efstathiou JA, Pisansky TM, Michalski JM, et al. Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical-prostatectomy. J Clin Oncol. 2016;34:3648–54.

    Article  PubMed  Google Scholar 

  45. King CR. The timing of salvage radiotherapy after radical-prostatectomy: a systematic review. Int J Radiat Oncol Biol Phys. 2012;84:104–11.

    Article  PubMed  Google Scholar 

  46. Perera M, Papa N, Roberts M, Williams M, Udovicich C, Vela I, et al. Gallium-68 PSMA PET in advanced prostate cancer - updated diagnostic utility, sensitivity, specificity, and distribution of PSMA-avid lesions: a systematic review and meta-analysis. Eur Urol. 2020;77:403–17.

  47. Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 2019;5:856–63.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bashir U, Tree A, Mayer E, Levine D, Parker C, Dearnaley D, et al. Impact of Ga-68-PSMA PET/CT on management in prostate cancer patients with very early biochemical recurrence after radical-prostatectomy. Eur J Nucl Med Mol Imaging. 2019;46:901–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Emmett L, Van Leeuwen PJ, Nandurkar R, Scheltema MJ, Cusick T, Hruby G, et al. Treatment outcomes from 68Ga-PSMA PET/CT-informed salvage radiation treatment in men with rising PSA after radical-prostatectomy: prognostic value of a negative PSMA PET. J Nucl Med. 2017;58:1972–6.

    Article  CAS  PubMed  Google Scholar 

  50. Farolfi A, Ceci F, Castellucci P, Graziani T, Siepe G, Lambertini A, et al. 68Ga-PSMA-11 PET/CT in prostate cancer patients with biochemical recurrence after radical-prostatectomy and PSA< 0.5 ng/ml. Efficacy and impact on treatment strategy. Eur J Nucl Med Mol Imaging. 2019;46:11–9.

    Article  CAS  PubMed  Google Scholar 

  51. Schmidt-Hegemann NS, Stief C, Kim TH, Eze C, Kirste S, Strouthos I, et al. Outcome after PSMA PET/CT–based salvage radiotherapy in patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2019;60:227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Glicksman RM, Metser U, Valliant J, Chung PW, Fleshner NE, Bristow RG, et al. DCFPyL PET-MRI/CT for unveiling a molecularly defined oligorecurrent prostate cancer state amenable for curative-intent ablative therapy: study protocol for a phase II trial. BMJ Open. 2020;10:e035959.

  53. Phillips R, Shi WY, Deek M, Radwan N, Lim SJ, Antonarakis ES, et al. Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: the ORIOLE phase 2 randomized clinical trial. JAMA Oncol. 2020;6:650–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vogel MM, Kroeze SG, Henkenberens C, Schmidt-Hegemann N-S, Kirste S, Becker J, et al. Prognostic risk classification for biochemical relapse-free survival in patients with oligorecurrent prostate cancer after 68Ga-PSMA-PET-guided metastasis-directed therapy. Eur J Nucl Med Mol Imaging. 2020;47:2328–38.

  55. Reyes DK, Demehri S, Werner RA, Pomper MG, Gorin MA, Rowe SP, et al. PSMA-targeted [18F]DCFPyL PET/CT-avid lesions in a patient with prostate cancer: clinical decision-making informed by the PSMA-RADS interpretive framework. Urol Case Rep. 2019;23:72–4.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wiegel T, Bartkowiak D, Bottke D, Bronner C, Steiner U, Siegmann A, et al. Adjuvant radiotherapy versus wait-and-see after radical prostatectomy: 10-year follow-up of the ARO 96–02/AUO AP 09/95 trial. Eur Urol. 2014;66:243–50.

    Article  PubMed  Google Scholar 

  57. Brand DH, Tree AC, Ostler P, van der Voet H, Loblaw A, Chu W, et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer: acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol. 2019;20:1531–43.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ost P, Reynders D, Decaestecker K, Fonteyne V, Lumen N, Lambert B, et al. Androgen-deprivation therapy is more than palliation in oligometastatic prostate cancer reply. J Clin Oncol. 2018;36:2351.

    Article  PubMed  Google Scholar 

  59. Hoffmann MA, Buchholz H-G, Wieler HJ, Miederer M, Rosar F, Fischer N, et al. PSA and PSA kinetics thresholds for the presence of 68Ga-PSMA-11 PET/CT-detectable lesions in patients with biochemical recurrent prostate cancer. Cancers. 2020;12:398.

    Article  CAS  PubMed Central  Google Scholar 

  60. Fendler WP, Calais J, Eiber M, Simko JP, Kurhanewicz J, Santos RD, et al. False positive PSMA PET for tumor remnants in the irradiated prostate and other interpretation pitfalls in a prospective multi-center trial. Eur J Nucl Med Mol Imaging. 2020. https://doi.org/10.1007/s00259-020-04945-1.

  61. Eiber M, Herrmann K, Calais J, Hadaschik B, Giesel FL, Hartenbach M, et al. Prostate cancer molecular imaging standardized evaluation: proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J Nucl Med. 2018;59:469–78.

    Article  PubMed  Google Scholar 

  62. IMPPORT trial (Australian Clinical Trials Registry Number 12618001530213). Available from: http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375932. Accessed 7th August 2020.

Download references

Acknowledgments

We wish to thank Ms. Daisy O’Connor and Ms. Chelseigh Fransch from Pacific Radiology, Christchurch, Canterbury, New Zealand.

Funding

AstraZeneca have provided tracers without cost to a small number of patients with financial hardship at St. Vincent’s Hospital; however, no authors have any role or relationship with AstraZeneca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Perry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

Formal ethics review was waived under New Zealand and Australian Health and Disability Ethics Committee with an exemption granted for minimal risk de-identified retrospective observational studies. Under such provisions, patients are not contacted individually for consent; however, both departments have consent for retrospective de-identified images to be used for research built into general imaging consent forms.

Consent to participate

Not applicable

Consent for publication

Not applicable

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Genitourinary

Supplementary information

ESM 1

(DOCX 4647 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perry, E., Talwar, A., Taubman, K. et al. [18F]DCFPyL PET/CT in detection and localization of recurrent prostate cancer following prostatectomy including low PSA < 0.5 ng/mL. Eur J Nucl Med Mol Imaging 48, 2038–2046 (2021). https://doi.org/10.1007/s00259-020-05143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-05143-9

Keywords

Navigation