Skip to main content

Advertisement

Log in

In vivo tracking of macrophage activated killer cells to sites of metastatic ovarian carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Radio-labelling of blood cells is an established technique for evaluating in vivo migration of normal cells to sites of pathology such as infection and haemorrhage. A limitation of cellular immunotherapies to induce anti-tumour responses is in part due to the uncertain ability of cellular effectors to reach their intended target. We extended the approach of cell radiolabelling to accurately examine the in vivo distribution of cellular immunotherapy with ex-vivo macrophage activated killer (MAK) cells. We describe the use of two methods of cell labelling for tracking the destination of autologous-derived macrophage activated killer (MAK®) cells linked to the bi-specific antibody MDX-H210 delivered either by intravenous (i.v.) or intraperitoneal (i.p.) injection in ten patients with peritoneal relapse of epithelial ovarian carcinoma. Our results demonstrate the feasibility of generating high numbers and purity of GMP quality MAK cells, which can be radiolabelled with 18F-FDG or 111In-oxime. MAK cell administration produced minimal infusional toxicity and demonstrated a reproducible pattern of in vivo distribution and active in vivo tracking to sites of known tumour following 8 of 16 i.v. infusions or 4 of 6 i.p. infusions. However, the leakage of 18F-FDG limited the ability to confidently confirm the tracking of MAK cells to tumour in all cases and improved PET labels are required. The addition of MDX-H210 bispecific antibody did not alter the distribution of cells to tumour sites, but did accelerate the clearance of i.v. administered MAK cells from the pulmonary circulation. This data demonstrates that cellular cancer immunotherapies may be successfully delivered to the sites of active tumour following either i.v. or i.p. injection in a proportion of patients with metastatic cancer. Incorporation of tracking studies in early cycles of cellular immunotherapy may allow selection of patients who demonstrate successful targeting of the immunotherapy for ongoing treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ribas A, Butterfield LH, Glaspy JA, Economou JS (2003) Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol 21:2415–2432

    Article  PubMed  CAS  Google Scholar 

  2. Frangioni J, Hajjar R (2004) In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 110:3378–3384

    Article  PubMed  Google Scholar 

  3. Chokri M, Lopez M, Oleron C, Girard A, Martinache C, Siffert JC, Canepa S, Bartholeyns J (1992) Production of macrophages with potent antitumoral properties (MAK) by culture of monocytes in the presence of GM-CSF and 1,25 (OH)2 vitD3. Anticancer Res 12:2257–2260

    PubMed  CAS  Google Scholar 

  4. Munn D, Cheung N (1990) Phagocytosis of tumor cells by human monocytes cultured in GM-CSF. J Exp Med 172:231–237

    Article  PubMed  CAS  Google Scholar 

  5. Fidler I, Kleinerman E (1992) Therapy of cancer metastases by systemic activation of macrophages. Res Immunol 144:284–287

    Article  Google Scholar 

  6. Dumont S, Hartmann D, Poindron P, Faradji A, Oberling F, Bartholeyns J (1988) Control of the antitumoral activity of human macrophages produced in large amount in view of adoptive transfer. Eur J Cancer Clin Oncol 24:1691–1698

    Article  PubMed  CAS  Google Scholar 

  7. Baron-Bodo V, Doceur P, Lefebvre ML, Labroquère K, Defaye C, Cambouris C, Prigent D, Salcedo M, Boyer A, Nardin A (2005) Anti-tumor properties of human-activated macrophages produced in large scale for clinical application. Immunobiol 210:267–277

    Article  CAS  Google Scholar 

  8. Faradji A, Bohbot A, Schmitt M, Siffert J, Dumont S, Wiesel M, Piemont Y, Eischen A, Bergerat J, Bartholeyns J, Poindron P, Witz JP, Oberling F (1994) Large scale isolation of human blood monocytes by continuous flow centrifugation leukapheresis and counterflow centrifugation elutriation for adoptive cellular immunotherapy in cancer patients. J Immunol Methods 174:297–309

    Article  PubMed  CAS  Google Scholar 

  9. Bartholeyns J, Lombard Y, Dumont S, Hartmann D, Chokri M, Giaimis J, Kaufmann S, Poindron P (1988) Immunotherapy of cancer: experimental approach with activated macrophages proliferating in culture. Cancer Detect Prev 12:413–420

    PubMed  CAS  Google Scholar 

  10. Chokri M, Freudenberg M, Galanos C, Poindron P, Bartholeyns J (1989) Compared antitumoral effects of LPS, TNF, interferon and activated macrophages on experimental tumors. Synergism and tissue distribution Anticancer Res 9:1185–1190

    PubMed  CAS  Google Scholar 

  11. Lopez M, Fechtenbaum J, David B, Martinache C, Chokri M, Canepa S, De Gramont A, Louvet C, Gorin I, Mortel O, Bartholeyns J (1992) Adoptive immunotherapy with activated macrophages grown in vitro from blood monocytes in cancer patients: a pilot study. J Immunotherapy 11:209–217

    Article  CAS  Google Scholar 

  12. Faradji A, Bohbo A, Frost H, Schmitt-Goguel M, Siffert JC, Dufour P, Eber M, Lallot C, Wiesel ML, Bergerat JP, Oberling F (1991) Phase I study of liposomal PTP-PE-activated autologous monocytes administered intraperitoneally to patients with peritoneal carcinomatosis. J Clin Oncol 9:1251–1260

    PubMed  CAS  Google Scholar 

  13. Valone F, Kaufman P, Guyre P (1995) Phase I trial of bispecific antibody MDX-H210 in patients with advanced breast or ovarian cancer that overexpresses the proto-oncogene HER-a neu. J Clin Oncol 13:2281–2292

    PubMed  CAS  Google Scholar 

  14. Mano MS, Awada A, Di Leo A, Durbecq V, Paesmans M, Cardoso F, Larsimont D, Piccart M (2004) Rates of topoisomerase II-alpha and HER-2 gene amplification and expression in epithelial ovarian carcinoma. Gynecol Oncol 92(3):887–895

    Article  PubMed  CAS  Google Scholar 

  15. Curnow RT (1997) Clinical experience with CD64-directed immunotherapy. An overview. Cancer Immunol Immunother 45:210–215

    Article  PubMed  CAS  Google Scholar 

  16. de Gramont A, Gangji D, Louvet C, Garcia ML, Tardy D, Romet-Lemonne JL (2002) Adoptive immunotherapy of ovarian carcinoma. Gynecol Oncol 86:102–103

    PubMed  Google Scholar 

  17. Chokri M, Lallot C, Ebert M, Poindron P, Bartholeyns J (1990) Biodistribution of indium-labelled macrophages in mice bearing solid tumors. Int J Immunother 6:79–84

    Google Scholar 

  18. Forstrom LA, Mullan BP, Hung JC, Lowe VJ, Thorson LM (2000) 18F-FDG labelling of human leucocytes. Nucl Med Commun 21:691–694

    PubMed  CAS  Google Scholar 

  19. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202

    Article  PubMed  Google Scholar 

  20. Wall DM, Prince HM (2003) Regulation of cellular therapies: the Australian perspective. Cytotherapy 5(4):284–288

    Article  PubMed  CAS  Google Scholar 

  21. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, McCarthy T, McCarthy DW, Gambhir SS (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 99:3030–3035

    Article  PubMed  CAS  Google Scholar 

  22. Quillien V, Moisan A, Lesimple T, Leberre C, Toujas L (2001) Biodistribution of 111indium-labeled macrophages infused intravenously in patients with renal carcinoma. Cancer Immunol Immunother 50(9):477–482

    Article  PubMed  CAS  Google Scholar 

  23. Lesimple T, Moisan A, Carsin A, Ollivier I, Mousseau M, Meunier B, Leberre C, Collet B, Quillien V, Drenou B, Lefeuvre-Plesse C, Chevrant-Breton J, Toujas L (2003) Injection by various routes of melanoma antigen-associated macrophages: biodistribution and clinical effects. Cancer Immunol Immunother 52(7):438–444

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the European Commission under the 6th Framework Programme for Research, Technological Development and Demonstration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Prince.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, D., Mileshkin, L., Wall, D. et al. In vivo tracking of macrophage activated killer cells to sites of metastatic ovarian carcinoma. Cancer Immunol Immunother 56, 155–163 (2007). https://doi.org/10.1007/s00262-006-0181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0181-3

Keywords

Navigation