Skip to main content

Advertisement

Log in

Characterizing the anti-tumor function of adoptively transferred NK cells in vivo

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells represent a promising cell type to utilize for effective adoptive immunotherapy. However, little is known about the important cytolytic molecules and signaling pathways used by NK cells in the adoptive transfer setting. To address this issue, we developed a novel mouse model to investigate the trafficking and mechanism of action of these cells. We demonstrate that methylcholanthrene-induced RKIK sarcoma cells were susceptible to NK cell-mediated lysis in vitro and in vivo following adoptive transfer of NK cells in C57BL/6 RAG-2−/−γc−/− mice. Cytotoxic molecules perforin, granzymes B and M as well as the death ligand TRAIL and pro-inflammatory cytokine IFN-γ were found to be important in the anti-tumor effect mediated by adoptively transferred NK cells. Importantly, we demonstrate that adoptively transferred NK cells could traffic to the tumor site and persisted in vivo which correlated with the anti-tumor effect observed. Overall, the results of this study have important implications for enhancing NK cell-based immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yokoyama WM, Kim S, French AR (2004) The dynamic life of natural killer cells. Annu Rev Immunol 22:405–429

    Article  CAS  PubMed  Google Scholar 

  2. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  CAS  PubMed  Google Scholar 

  3. Cavanaugh VJ, Raulet DH, Campbell AE (2007) Upregulation of CD94/NKG2A receptors and Qa-1b ligand during murine cytomegalovirus infection of salivary glands. J Gen Virol 88:1440–1445

    Article  CAS  PubMed  Google Scholar 

  4. Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190

    Article  CAS  PubMed  Google Scholar 

  5. Raulet DH, Guerra N (2009) Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9:568–580

    Article  CAS  PubMed  Google Scholar 

  6. Smyth MJ, Thia KY, Cretney E et al (1999) Perforin is a major contributor to NK cell control of tumor metastasis. J Immunol 162:6658–6662

    CAS  PubMed  Google Scholar 

  7. Seki N, Hayakawa Y, Brooks AD et al (2003) Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis is an important endogenous mechanism for resistance to liver metastases in murine renal cancer. Cancer Res 63:207–213

    CAS  PubMed  Google Scholar 

  8. Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res 90:127–156

    Article  CAS  PubMed  Google Scholar 

  9. Smyth MJ, Crowe NY, Godfrey DI (2001) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13:459–463

    Article  CAS  PubMed  Google Scholar 

  10. Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5:112–124

    Article  CAS  PubMed  Google Scholar 

  11. Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y (2004) Cytokines in cancer immunity and immunotherapy. Immunol Rev 202:275–293

    Article  CAS  PubMed  Google Scholar 

  12. Rosenberg S (1985) Lymphokine-activated killer cells: a new approach to immunotherapy of cancer. J Natl Cancer Inst 75:595–603

    CAS  PubMed  Google Scholar 

  13. Bordignon C, Carlo-Stella C, Colombo MP et al (1999) Cell therapy: achievements and perspectives. Haematologica 84:1110–1149

    CAS  PubMed  Google Scholar 

  14. Morecki S, Yacovlev E, Gelfand Y, Vilensky A, Slavin S (2004) Allogeneic versus syngeneic killer splenocytes as effector cells for the induction of graft-versus-tumor effect. Biol Blood Marrow Transplant 10:40–48

    Article  PubMed  Google Scholar 

  15. Kawase T, Matsuo K, Kashiwase K et al (2009) HLA mismatch combinations associated with decreased risk of relapse: implications for the molecular mechanism. Blood 113:2851–2858

    Article  CAS  PubMed  Google Scholar 

  16. Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100

    Article  CAS  PubMed  Google Scholar 

  17. Guven H, Gilljam M, Chambers BJ et al (2003) Expansion of natural killer (NK) and natural killer-like T (NKT)-cell populations derived from patients with B-chronic lymphocytic leukemia (B-CLL): a potential source for cellular immunotherapy. Leukemia 17:1973–1980

    Article  CAS  PubMed  Google Scholar 

  18. Alici E, Sutlu T, Bjorkstrand B et al (2008) Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood 111:3155–3162

    Article  CAS  PubMed  Google Scholar 

  19. Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106:376–383

    Article  CAS  PubMed  Google Scholar 

  20. Cho D, Campana D (2009) Expansion and activation of natural killer cells for cancer immunotherapy. Korean J Lab Med 29:89–96

    Article  CAS  PubMed  Google Scholar 

  21. Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678

    Article  CAS  PubMed  Google Scholar 

  22. Pegram HJ, Jackson JT, Smyth MJ, Kershaw MH, Darcy PK (2008) Adoptive transfer of gene-modified primary NK cells can specifically inhibit tumor progression in vivo. J Immunol 181:3449–3455

    CAS  PubMed  Google Scholar 

  23. Abdool K, Cretney E, Brooks AD et al (2006) NK cells use NKG2D to recognize a mouse renal cancer (Renca), yet require intercellular adhesion molecule-1 expression on the tumor cells for optimal perforin-dependent effector function. J Immunol 177:2575–2583

    CAS  PubMed  Google Scholar 

  24. Takeda K, Smyth MJ, Cretney E et al (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195:161–169

    Article  CAS  PubMed  Google Scholar 

  25. Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747

    Article  CAS  PubMed  Google Scholar 

  26. Screpanti V, Wallin RP, Ljunggren HG, Grandien A (2001) A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J Immunol 167:2068–2073

    CAS  PubMed  Google Scholar 

  27. Trapani JA (2001) Granzymes: a family of lymphocyte granule serine proteases. Genome Biol 2:3014 (reviews)

    Google Scholar 

  28. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168:1356–1361

    CAS  PubMed  Google Scholar 

  29. Nagata S, Suda T (1995) Fas and Fas ligand: lpr and gld mutations. Immunol Today 16:39–43

    Article  CAS  PubMed  Google Scholar 

  30. Rabinowich H, Vitolo D, Altarac S, Herberman RB, Whiteside TL (1992) Role of cytokines in the adoptive immunotherapy of an experimental model of human head and neck cancer by human IL-2-activated natural killer cells. J Immunol 149:340–349

    CAS  PubMed  Google Scholar 

  31. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189

    Article  CAS  PubMed  Google Scholar 

  32. Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y (2005) NKG2D function protects the host from tumor initiation. J Exp Med 202:583–588

    Article  CAS  PubMed  Google Scholar 

  33. Huang J, Khong HT, Dudley ME et al (2005) Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother 28:258–267

    Article  CAS  PubMed  Google Scholar 

  34. Zhou J, Dudley ME, Rosenberg SA, Robbins PF (2005) Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother 28:53–62

    Article  PubMed  Google Scholar 

  35. Dudley ME, Wunderlich JR, Robbins PF et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  CAS  PubMed  Google Scholar 

  36. Besser MJ, Shapira-Frommer R, Treves AJ et al (2009) Minimally cultured or selected autologous tumor-infiltrating lymphocytes after a lympho-depleting chemotherapy regimen in metastatic melanoma patients. J Immunother 32:415–423

    Article  CAS  PubMed  Google Scholar 

  37. Lakshmikanth T, Burke S, Ali TH et al (2009) NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 119:1251–1263

    Article  CAS  PubMed  Google Scholar 

  38. van den Broek MF, Kagi D, Zinkernagel RM, Hengartner H (1995) Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur J Immunol 25:3514–3516

    Article  PubMed  Google Scholar 

  39. Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197

    Article  CAS  PubMed  Google Scholar 

  40. Bolitho P, Voskoboinik I, Trapani JA, Smyth MJ (2007) Apoptosis induced by the lymphocyte effector molecule perforin. Curr Opin Immunol 19:339–347

    Article  CAS  PubMed  Google Scholar 

  41. Keefe D, Shi L, Feske S et al (2005) Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23:249–262

    Article  CAS  PubMed  Google Scholar 

  42. Metkar SS, Wang B, Aguilar-Santelises M et al (2002) Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B-serglycin complexes into target cells without plasma membrane pore formation. Immunity 16:417–428

    Article  CAS  PubMed  Google Scholar 

  43. Sarin A, Williams MS, Alexander-Miller MA, Berzofsky JA, Zacharchuk CM, Henkart PA (1997) Target cell lysis by CTL granule exocytosis is independent of ICE/Ced-3 family proteases. Immunity 6:209–215

    Article  CAS  PubMed  Google Scholar 

  44. Darmon AJ, Nicholson DW, Bleackley RC (1995) Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377:446–448

    Article  CAS  PubMed  Google Scholar 

  45. Waterhouse NJ, Sedelies KA, Trapani JA (2006) Role of Bid-induced mitochondrial outer membrane permeabilization in granzyme B-induced apoptosis. Immunol Cell Biol 84:72–78

    Article  CAS  PubMed  Google Scholar 

  46. Kelly JM, Waterhouse NJ, Cretney E et al (2004) Granzyme M mediates a novel form of perforin-dependent cell death. J Biol Chem 279:22236–22242

    Article  CAS  PubMed  Google Scholar 

  47. Beresford PJ, Xia Z, Greenberg AH, Lieberman J (1999) Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity 10:585–594

    Article  CAS  PubMed  Google Scholar 

  48. Ebnet K, Hausmann M, Lehmann-Grube F et al (1995) Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J 14:4230–4239

    CAS  PubMed  Google Scholar 

  49. Trapani JA, Bird PI (2008) A renaissance in understanding the multiple and diverse functions of granzymes? Immunity 29:665–667

    Article  CAS  PubMed  Google Scholar 

  50. Buzza MS, Zamurs L, Sun J et al (2005) Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 280:23549–23558

    Article  CAS  PubMed  Google Scholar 

  51. Metkar SS, Menaa C, Pardo J et al (2008) Human and mouse granzyme A induce a proinflammatory cytokine response. Immunity 29:720–733

    Article  CAS  PubMed  Google Scholar 

  52. Robbins PF, Dudley ME, Wunderlich J et al (2004) Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 173:7125–7130

    CAS  PubMed  Google Scholar 

  53. Cooper MA, Bush JE, Fehniger TA et al (2002) In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100:3633–3638

    Article  CAS  PubMed  Google Scholar 

  54. Prlic M, Blazar BR, Farrar MA, Jameson SC (2003) In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 197:967–976

    Article  CAS  PubMed  Google Scholar 

  55. Becknell B, Caligiuri MA (2005) Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 86:209–239

    Article  CAS  PubMed  Google Scholar 

  56. Hayakawa Y, Smyth MJ (2006) CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176:1517–1524

    CAS  PubMed  Google Scholar 

  57. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    Article  CAS  PubMed  Google Scholar 

  58. Colucci F, Caligiuri MA, Di Santo JP (2003) What does it take to make a natural killer? Nat Rev Immunol 3:413–425

    Article  CAS  PubMed  Google Scholar 

  59. Klingemann HG, Martinson J (2004) Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy 6:15–22

    Article  PubMed  Google Scholar 

  60. Fujisaki H, Kakuda H, Shimasaki N et al (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69:4010–4017

    Article  CAS  PubMed  Google Scholar 

  61. Lundqvist A, Yokoyama H, Smith A, Berg M, Childs R (2009) Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells. Blood 113:6120–6127

    Article  CAS  PubMed  Google Scholar 

  62. Roda JM, Parihar R, Carson WE 3rd (2005) CpG-containing oligodeoxynucleotides act through TLR9 to enhance the NK cell cytokine response to antibody-coated tumor cells. J Immunol 175:1619–1627

    CAS  PubMed  Google Scholar 

  63. Muller T, Uherek C, Maki G et al (2008) Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother 57:411–423

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the assistance of the Peter MacCallum Cancer Centre Experimental Animal Facility technicians for animal care, in particular Michelle Stirling and Leanne McNiff for maintenance of the gene-targeted mice used in this study. We would also like to acknowledge Nicole McLaughlin for generating some of the antibodies used in these experiments. This work was funded by project grants from the National Health and Medical Research Council (NHMRC), Cancer Council of Victoria and the Susan Komen Breast Cancer Foundation. M.H. Kershaw and P.K. Darcy were supported by a NHMRC Senior Research Fellowship and Career Development Award, respectively. M.J. Smyth was supported by a NHMRC Senior Principal Research Fellowship. N.M. Haynes was supported by a NHMRC CJ Martin Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip K. Darcy.

Additional information

M. H. Kershaw and P. K. Darcy contributed equally as senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pegram, H.J., Haynes, N.M., Smyth, M.J. et al. Characterizing the anti-tumor function of adoptively transferred NK cells in vivo. Cancer Immunol Immunother 59, 1235–1246 (2010). https://doi.org/10.1007/s00262-010-0848-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0848-7

Keywords

Navigation