Skip to main content

Advertisement

Log in

Epidemiology, biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Merkel cell carcinoma (MCC) is a highly aggressive, often lethal neuroendocrine cancer. Its carcinogenesis may be either caused by the clonal integration of the Merkel cell polyomavirus into the host genome or by UV-induced mutations. Notably, virally-encoded oncoproteins and UV-induced mutations affect comparable signaling pathways such as RB restriction of cell cycle progression or p53 inactivation. Despite its low incidence, MCC recently received much attention based on its exquisite immunogenicity and the resulting major success of immune modulating therapies. Here, we summarize current knowledge on epidemiology, biology and therapy of MCC as conclusion of the project ‘Immune Modulating strategies for treatment of Merkel Cell Carcinoma’, which was funded over a 5-year period by the European Commission to investigate innovative immunotherapies for MCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HDAC:

Histone deacetylase

ICD-O:

International Classification of Diseases for Oncology

IMMOMEC:

Immune Modulating Strategies for Treatment of Merkel Cell Carcinoma

LT:

Large T-antigen

MAX:

Myc-associated factor X

MCC:

Merkel cell carcinoma

MCPyV:

Merkel cell polyomavirus

MDM2:

Mouse double minute 2 homolog

MHC:

Major histocompatibility complex

MIC:

MHC class I chain-related protein

MYCL:

l-Myc-1 proto-oncogene protein

NKG2D:

Natural killer group 2D

PD-1:

Programmed death protein 1

PD-L1:

Programmed death-ligand 1

PP:

Pocket protein

RB:

Retinoblastoma protein

sT:

Small T-Antigen

TIL:

Tumor-infiltrating lymphocytes

References

  1. Schadendorf D, Lebbé C, Hausen zur A et al (2017) Merkel cell carcinoma: epidemiology, prognosis, therapy and unmet medical needs. Eur J Cancer 71:53–69. https://doi.org/10.1016/j.ejca.2016.10.022

    Article  PubMed  Google Scholar 

  2. Eisemann N, Jansen L, Castro FA et al (2016) Survival with nonmelanoma skin cancer in Germany. Br J Dermatol 174:778–785. https://doi.org/10.1111/bjd.14352

    Article  CAS  PubMed  Google Scholar 

  3. Kaufman HL, Russell J, Hamid O et al (2016) Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 17:1374–1385. https://doi.org/10.1016/S1470-2045(16)30364-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nghiem PT, Bhatia S, Lipson EJ et al (2016) PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med 374:2542–2552. https://doi.org/10.1056/NEJMoa1603702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Terheyden P, Becker JC (2017) New developments in the biology and the treatment of metastatic Merkel cell carcinoma. Curr Opin Oncol 29:221–226. https://doi.org/10.1097/CCO.0000000000000363

    Article  CAS  Google Scholar 

  6. Gambichler T, Wieland U, Silling S et al (2017) Left-sided laterality of Merkel cell carcinoma in a German population: more than just sun exposure. J Cancer Res Clin Oncol 143:347–350. https://doi.org/10.1007/s00432-016-2293-2

    Article  CAS  PubMed  Google Scholar 

  7. Gambichler T, Mohtezebsade S, Wieland U et al (2017) Prognostic relevance of high atonal homolog-1 expression in Merkel cell carcinoma. J Cancer Res Clin Oncol 143:43–49. https://doi.org/10.1007/s00432-016-2257-6

    Article  CAS  PubMed  Google Scholar 

  8. Ritter C, Fan K, Paulson KG et al (2016) Reversal of epigenetic silencing of MHC class I chain-related protein A and B improves immune recognition of Merkel cell carcinoma. Sci Rep 6:21678. https://doi.org/10.1038/srep21678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paulson KG, Tegeder A, Willmes C et al (2014) Downregulation of MHC-I expression is prevalent but reversible in Merkel cell carcinoma. Cancer Immunol Res 2(11):1071–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buder K, Lapa C, Kreissl MC et al (2014) Somatostatin receptor expression in Merkel cell carcinoma as target for molecular imaging. BMC Cancer 14:268. https://doi.org/10.1186/1471-2407-14-268

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lyngaa R, Pedersen NW, Schrama D et al (2014) T-cell responses to oncogenic Merkel cell polyomavirus proteins distinguish patients with Merkel cell carcinoma from healthy donors. Clin Cancer Res 20:1768–1778. https://doi.org/10.1158/1078-0432.CCR-13-2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Loader DE, Feldmann R, Baumgartner M et al (2013) Clinical remission of Merkel cell carcinoma after treatment with imatinib. J Am Acad Dermatol 69:e181–e183. https://doi.org/10.1016/j.jaad.2013.03.042

    Article  PubMed  Google Scholar 

  13. Schrama D, Hesbacher S, Becker JC, Houben R (2013) Survivin downregulation is not required for T antigen knockdown mediated cell growth inhibition in MCV infected merkel cell carcinoma cells. Int J Cancer 132:2980–2982. https://doi.org/10.1002/ijc.27962

    Article  CAS  PubMed  Google Scholar 

  14. Vlahova L, Doerflinger Y, Houben R et al (2012) P-cadherin expression in Merkel cell carcinomas is associated with prolonged recurrence-free survival. Br J Dermatol 166:1043–1052. https://doi.org/10.1111/j.1365-2133.2012.10853.x

    Article  CAS  PubMed  Google Scholar 

  15. Willmes C, Adam C, Alb M et al (2012) Type I and II IFNs inhibit Merkel cell carcinoma via modulation of the Merkel cell polyomavirus T antigens. Cancer Res 72:2120–2128. https://doi.org/10.1158/0008-5472.CAN-11-2651

    Article  CAS  PubMed  Google Scholar 

  16. Schadendorf D, Lebbé C, zur Hausen A et al (2017) Merkel cell carcinoma: epidemiology, prognosis, therapy and unmet medical needs. Eur J Cancer 71:53–69. https://doi.org/10.1016/j.ejca.2016.10.022

    Article  PubMed  Google Scholar 

  17. Tilling T, Wladykowski E, Failla AV et al (2013) Immunohistochemical analyses point to epidermal origin of human Merkel cells. Histochem Cell Biol 141:407–421. https://doi.org/10.1007/s00418-013-1168-8

    Article  PubMed  Google Scholar 

  18. Sauer CM, Chteinberg E, Rennspiess D et al (2017) Merkel cell carcinoma: cutaneous manifestation of a highly malignant pre-/pro-B cell neoplasia? Hautarzt 68:204–210. https://doi.org/10.1007/s00105-017-3945-0 (ArticleGerman)

    Article  CAS  PubMed  Google Scholar 

  19. Becker JC, zur Hausen A (2014) Cells of origin in skin cancer. J Invest Dermatol 134:2491–2493. https://doi.org/10.1038/jid.2014.233

    Article  CAS  PubMed  Google Scholar 

  20. zur Hausen A, Rennspiess D, Winnepenninckx V (2013) Early B-cell differentiation in Merkel cell carcinomas: clues to cellular ancestry. Cancer Res 73:4982–4987. https://doi.org/10.1158/0008-5472.CAN-13-0616

    Article  CAS  PubMed  Google Scholar 

  21. Liu W, Yang R, Payne AS et al (2016) Identifying the target cells and mechanisms of Merkel Cell polyomavirus infection. Cell Host Microbe 19:775–787. https://doi.org/10.1016/j.chom.2016.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grundhoff A, Fischer N (2015) Merkel cell polyomavirus, a highly prevalent virus with tumorigenic potential. Curr Opin Virol 14:129–137. https://doi.org/10.1016/j.coviro.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  23. Verhaegen ME, Mangelberger D, Harms PW et al (2014) Merkel cell polyomavirus small T antigen is oncogenic in transgenic mice. J Invest Dermatol 135:1415–1424. https://doi.org/10.1038/jid.2014.446

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shuda M, Chang Y, Moore PS (2014) Merkel cell polyomavirus-positive Merkel cell carcinoma requires viral small T-antigen for cell proliferation. J Invest Dermatol 134:1479–1481. https://doi.org/10.1038/jid.2013.483

    Article  CAS  PubMed  Google Scholar 

  25. Houben R, Shuda M, Weinkam R et al (2010) Merkel cell Polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens. J Virol 84:7064–7072. https://doi.org/10.1128/JVI.02400-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moore PS, Chang Y (2014) The conundrum of causality in tumor virology: the cases of KSHV and MCV. Semin Cancer Biol 26:4–12. https://doi.org/10.1016/j.semcancer.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  27. Shuda M, Kwun HJ, Feng H et al (2011) Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. J Clin Invest 121:3623–3634. https://doi.org/10.1172/JCI46323DS1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Richards KF, Gustafierro A, Shuda M, Toptan T, Moore PS, Chang Y (2015) Merkel cell polyomavirus T antigens promote cell proliferation and inflammatory cytokine gene expression. J Gen Virol 96(12):3532–3544. doi:https://doi.org/10.1099/jgv.0.000287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shuda M, Guastafierro A, Geng X et al (2015) Merkel Cell polyomavirus small T antigen induces cancer and embryonic Merkel cell proliferation in a transgenic mouse model. PLoS One 10:e0142329–e0142320. https://doi.org/10.1371/journal.pone.0142329

    Article  PubMed  PubMed Central  Google Scholar 

  30. Borchert S, Czech-Sioli M, Neumann F et al (2014) High-affinity Rb binding, p53 inhibition, subcellular localization, and transformation by wild-type or tumor-derived shortened merkel cell polyomavirus large T antigens. J Virol 88:3144–3160. https://doi.org/10.1128/JVI.02916-13

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shuda M, Kwun HJ, Feng H et al (2011) Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. J Clin Invest 121:3623–3634. https://doi.org/10.1172/JCI46323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kwun HJ, Shuda M, Feng H et al (2013) Merkel cell polyomavirus small T antigen controls viral replication and oncoprotein expression by targeting the cellular ubiquitin ligase SCFFbw7. Cell Host Microbe 14:125–135. https://doi.org/10.1016/j.chom.2013.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Griffiths DA, Abdul-Sada H, Knight LM et al (2013) Merkel cell polyomavirus small T antigen targets the NEMO adaptor protein to disrupt inflammatory signaling. J Virol 87:13853–13867. https://doi.org/10.1128/JVI.02159-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abdul-Sada H, Müller M, Mehta R et al (2017) The PP4R1 sub-unit of protein phosphatase PP4 is essential for inhibition of NF-κB by merkel polyomavirus small tumour antigen. Oncotarget 8:25418–25432. https://doi.org/10.18632/oncotarget.15836

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wendzicki JA, Moore PS, Chang Y (2015) Large T and small T antigens of Merkel cell polyomavirus. Curr Opin Virol 11:38–43. https://doi.org/10.1016/j.coviro.2015.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Knight LM, Stakaityte G, Wood JJ et al (2015) Merkel cell polyomavirus small T antigen mediates microtubule destabilisation to promote cell motility and migration. J Virol 89(1):35–47

    Article  PubMed  Google Scholar 

  37. Berrios C, Padi M, Keibler MA et al (2016) Merkel cell polyomavirus small T antigen promotes pro-glycolytic metabolic perturbations required for transformation. PLoS Pathog 12:e1006020–e1006021. https://doi.org/10.1371/journal.ppat.1006020

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hesbacher S, Pfitzer L, Wiedorfer K et al (2016) RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells. Oncotarget 7:32956–32968. https://doi.org/10.18632/oncotarget.8793

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arora R, Shuda M, Guastafierro A et al (2012) Survivin is a therapeutic target in Merkel cell carcinoma. Sci Transl Med 4(133):133ra56. https://doi.org/10.1126/scitranslmed.3003713

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu X, Hein J, Richardson SCW et al (2011) Merkel cell polyomavirus large T antigen disrupts lysosome clustering by translocating human Vam6p from the cytoplasm to the nucleus. J Biol Chem 286:17079–17090. https://doi.org/10.1074/jbc.M110.192856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang X, Li J, Schowalter RM et al (2012) Bromodomain protein Brd4 plays a key role in Merkel cell polyomavirus DNA replication. PLoS pathog 8:e1003021–e1003016. https://doi.org/10.1371/journal.ppat.1003021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Knips J, Czech-Sioli M, Spohn M et al (2017) Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice. Int J Cancer 141:160–171. https://doi.org/10.1002/ijc.30723

    Article  CAS  PubMed  Google Scholar 

  43. Schrama D, Hesbacher S, Angermeyer S et al (2015) Serine 220 phosphorylation of the Merkel cell polyomavirus large T antigen crucially supports growth of Merkel cell carcinoma cells. Int J Cancer 138:1153–1162. https://doi.org/10.1002/ijc.29862

    Article  PubMed  Google Scholar 

  44. Houben R, Angermeyer S, Haferkamp S et al (2014) Characterization of functional domains in the Merkel cell polyoma virus Large T antigen. Int J Cancer 136:E290–E300. https://doi.org/10.1002/ijc.29200

    Article  PubMed  Google Scholar 

  45. Cheng J, Rozenblatt-Rosen O, Paulson KG et al (2013) Merkel cell polyomavirus large T antigen has growth-promoting and inhibitory activities. J Virol 87:6118–6126. https://doi.org/10.1128/JVI.00385-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Starrett GJ, Marcelus C, Cantalupo PG et al (2017) Merkel cell polyomavirus exhibits dominant control of the tumor genome and transcriptome in virus-associated merkel cell carcinoma. MBio 8(1):e02079–e02016. https://doi.org/10.1128/mBio.02079-16

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wong SQ, Waldeck K, Vergara IA et al (2015) UV-associated mutations underlie the etiology of MCV-negative Merkel cell carcinomas. Cancer Res 75:5228–5234. https://doi.org/10.1158/0008-5472.CAN-15-1877

    Article  CAS  PubMed  Google Scholar 

  48. Erstad DJ, Cusack JC Jr (2014) Mutational analysis of Merkel cell carcinoma. Cancers 6:2116–2136. https://doi.org/10.3390/cancers6042116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harms PW, Vats P, Verhaegen ME et al (2015) The distinctive mutational spectra of polyomavirus-negative Merkel cell carcinoma. Cancer Res 75:3720–3727. https://doi.org/10.1158/0008-5472.CAN-15-0702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Veija T, Sarhadi VK, Koljonen V et al (2016) Hotspot mutations in polyomavirus positive and negative Merkel cell carcinomas. Cancer Genet 209:30–35. https://doi.org/10.1016/j.cancergen.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  51. Goh G, Walradt T, Markarov V et al (2016) Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy. Oncotarget 7:3403–3415. https://doi.org/10.18632/oncotarget.6494

    Article  PubMed  Google Scholar 

  52. Cohen PR, Tomson BN, Elkin SK et al (2016) Genomic portfolio of Merkel cell carcinoma as determined by comprehensive genomic profiling: implications for targeted therapeutics. Oncotarget 7:23454–23467. https://doi.org/10.18632/oncotarget.8032

    Article  PubMed  PubMed Central  Google Scholar 

  53. Harms KL, Lazo de la Vega L, Hovelson DH et al (2017) Molecular profiling of multiple primary Merkel cell carcinoma to distinguish genetically distinct tumors from clonally related metastases. JAMA Dermatol 153:505–508. https://doi.org/10.1001/jamadermatol.2017.0507

    Article  PubMed  Google Scholar 

  54. Bentzen AK, Marquard AM, Lyngaa R et al (2016) Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol 34:1037–1045. https://doi.org/10.1038/nbt.3662

    Article  CAS  PubMed  Google Scholar 

  55. López-Soto A, Huergo-Zapico L, Acebes-Huerta A et al (2014) NKG2D signaling in cancer immunosurveillance. Int J Cancer 136:1741–1750. https://doi.org/10.1002/ijc.28775

    Article  PubMed  Google Scholar 

  56. Bauman Y, Nachmani D, Vitenshtein A et al (2011) An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination. Cell Host Microbe 9:93–102. https://doi.org/10.1016/j.chom.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  57. Paulson KG, Lewis CW, Redman MW et al (2016) Viral oncoprotein antibodies as a marker for recurrence of Merkel cell carcinoma: a prospective validation study. Cancer 123:1464–1474. https://doi.org/10.1002/cncr.30475

    Article  PubMed  Google Scholar 

  58. Becker JC, Andersen MH, Schrama D, thor Straten P (2013) Immune-suppressive properties of the tumor microenvironment. Cancer Immunol Immunother 62:1137–1148. https://doi.org/10.1007/s00262-013-1434-6

    Article  CAS  PubMed  Google Scholar 

  59. Frohm ML, Griffith KA, Harms KL et al (2016) Recurrence and survival in patients with Merkel cell carcinoma undergoing surgery without adjuvant radiation therapy to the primary site. JAMA Dermatol 152:1001–1007. https://doi.org/10.1001/jamadermatol.2016.1428

    Article  PubMed  Google Scholar 

  60. Harms KL, Healy MA, Nghiem P et al (2016) Analysis of prognostic factors from 9387 Merkel cell carcinoma cases forms the basis for the new 8th edition AJCC staging system. Ann Surg Oncol 23:3564–3571. https://doi.org/10.1245/s10434-016-5266-4

    Article  PubMed  Google Scholar 

  61. Becker JC, Stang A, DeCaprio JA et al (2017) Merkel cell carcinoma. Nat Rev Dis Primers 3:17077. https://doi.org/10.1038/nrdp.2017.77

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen C. Becker.

Ethics declarations

Funding

J. C. Becker is funded by the European Commission Grant Agreement #277,775/IMMOMEC, the BMBF 03VP01062/CTCelect, the Hiege Stiftung, and the German Cancer Consortium (DKTK). A. Stang receives a Grant from the German Federal Ministry of Education and Science (BMBF), Grant Number 01ER1305. J. A. DeCaprio was supported in part by US Public Health Service Grants R01CA63113, R01CA173023, P01CA050661, the DFCI Helen Pappas Merkel Cell Research Fund and the Claudia Adams Barr Program in Cancer Research. P. Nghiem was supported in part by US Public Health Service grants K24-CA139052, RO1-CA176841, and the UW MCC Gift Fund.

Conflict of interest

J. C. Becker has received speaker honoraria from Amgen, MerckSerono, and Pfizer, advisory board honoraria from Amgen, CureVac, eTheRNA, Lytix, MerckSerono, Novartis, Rigontec, and Takeda as well as research funding from Boehringer Ingelheim, BMS and MerckSerono; the activities with BMS, MerckSerono and Pfizer are related to the submitted report (therapy of advanced MCC). A research project in J. A. DeCaprio’s laboratory is supported by Constellation Pharmaceuticals. P. Nghiem has served as a consultant for EMD Serono and Pfizer and has received research support to his institution from Bristol-Myers Squibb. The other authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, J.C., Stang, A., Hausen, A.z. et al. Epidemiology, biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC. Cancer Immunol Immunother 67, 341–351 (2018). https://doi.org/10.1007/s00262-017-2099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2099-3

Keywords

Navigation