Skip to main content
Log in

The BCR-ABL inhibitor nilotinib influences phenotype and function of monocyte-derived human dendritic cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In chronic myeloid leukemia (CML), the translocation t(9;22) results in the fusion protein BCR-ABL (breakpoint cluster region-abelson murine leukemia), a tyrosine kinase mediating oncogenic signaling which is successfully targeted by treatment with BCR-ABL inhibitors like imatinib. However, BCR-ABL inhibitors may also affect antitumor immunity. For instance, it was reported that imatinib impairs the function of dendritic cells (DCs) that play a central role in initiating and sustaining T cell responses. Meanwhile, second generation BCR-ABL inhibitors like nilotinib, which inhibits BCR-ABL with enhanced potency have become standard of treatment, at least in patients with BCR-ABL kinase domain mutations. In this study we analyzed the influence of therapeutic concentrations of nilotinib on human monocyte-derived DCs and compared its effects to imatinib. We found that both tyrosine kinase inhibitors (TKI) comparably and significantly impaired differentiation of monocytes to DCs as revealed by curtated downregulation of CD14 and reduced upregulation of CD1a and CD83. This was only partially restored after withdrawal of the TKI. Moreover, both TKI significantly reduced activation-induced IL-12p70 and C-C motif chemokine ligand (CCL) 3 secretion, while divergent TKI effects for CCL2 and CCL5 were observed. In contrast, only nilotinib significantly impaired the migratory capacity of DCs and their capacity to induce T-cell immune responses in MLRs. Our results indicate that imatinib and nilotinib may differ significantly with regard to their influence on antitumor immunity. Thus, for future combinatory approaches and particularly stop studies in CML treatment, choice of the most suitable BCR-ABL inhibitor requires careful consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BB515:

Brilliant blue 515

BCR-ABL:

Breakpoint cluster region-abelson murine leukemia

CCL:

C-C motif chemokine ligand

CCR:

C-C motif chemokine receptor

CML:

Chronic myeloid leukemia

DC:

Dendritic cell

DMFI:

Delta MFI

FSC:

Forward scatter

GITR/GITRL:

Glucocorticoid-induced tumor necrosis factor receptor/-ligand

HLA-DR:

Human leukocyte antigen–antigen D related

MIP-3β:

Macrophage-inflammatory protein 3β

RANK:

Receptor activator of NF-κB

RANKL:

Receptor activator of NF-κB ligand

SSC:

Side scatter

TKI:

Tyrosine kinase inhibitor

References

  1. Lechner CJ, Grünebach F, Brossart P et al. (2009) Effects of BCR/ABL inhibitors on monocyte-derived dendritic cells. Onkologie 32(suppl 4):1–80. https://doi.org/10.1159/000242462 (poster)

    Google Scholar 

  2. Schmidt SM, Lechner CJ, Gruenebach F et al (2009) BCR/ABL Inhibitors influence phenotype and function of monocyte-derived human dendritic cells. Blood 114:22 1116 [poster].

    Google Scholar 

  3. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037. https://doi.org/10.1056/NEJM200104053441401

    Article  CAS  PubMed  Google Scholar 

  4. O’Brien SG, Guilhot F, Larson RA et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994–1004. https://doi.org/10.1056/NEJMoa022457

    Article  PubMed  Google Scholar 

  5. Hughes TP, Kaeda J, Branford S et al (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 349:1423–1432. https://doi.org/10.1056/NEJMoa030513

    Article  CAS  PubMed  Google Scholar 

  6. Druker BJ, Guilhot F, O’Brien SG et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417. https://doi.org/10.1056/NEJMoa062867

    Article  CAS  PubMed  Google Scholar 

  7. Gorre ME, Mohammed M, Ellwood K et al. (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 293:876–880. https://doi.org/10.1126/science.1062538

    Article  CAS  PubMed  Google Scholar 

  8. Shah NP, Nicoll JM, Nagar B et al. (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125

    Article  CAS  PubMed  Google Scholar 

  9. Talpaz M, Shah NP, Kantarjian H et al (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354:2531–2541. https://doi.org/10.1056/NEJMoa055229

    Article  CAS  PubMed  Google Scholar 

  10. Kantarjian H, Giles F, Wunderle L et al (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354:2542–2551. https://doi.org/10.1056/NEJMoa055104

    Article  PubMed  Google Scholar 

  11. Kantarjian H, Shah NP, Hochhaus A et al (2010) Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 362:2260–2270. https://doi.org/10.1056/NEJMoa1002315

    Article  CAS  PubMed  Google Scholar 

  12. Saglio G, Kim DW, Issaragrisil S et al (2010) Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 362:2251–2259. https://doi.org/10.1056/NEJMoa0912614

    Article  CAS  PubMed  Google Scholar 

  13. Rix U, Hantschel O, Durnberger G et al (2007) Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110:4055–4063. https://doi.org/10.1182/blood-2007-07-102061

    Article  CAS  PubMed  Google Scholar 

  14. Weisberg E, Manley PW, Breitenstein W et al. (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141. https://doi.org/10.1016/j.ccr.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  15. Lombardo LJ, Lee FY, Chen P et al (2004) Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47:6658–6661. https://doi.org/10.1021/jm049486a

    Article  CAS  PubMed  Google Scholar 

  16. Krusch M, Salih HR (2011) Effects of BCR-ABL inhibitors on anti-tumor immunity. Curr Med Chem 18:5174–5184

    Article  CAS  PubMed  Google Scholar 

  17. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature. 392:245–252. https://doi.org/10.1038/32588

    Article  CAS  PubMed  Google Scholar 

  18. Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811. https://doi.org/10.1146/annurev.immunol.18.1.767

    Article  CAS  PubMed  Google Scholar 

  19. Cella M, Sallusto F, Lanzavecchia A (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9:10–16

    Article  CAS  PubMed  Google Scholar 

  20. Appel S, Boehmler AM, Grunebach F et al. (2004) Imatinib mesylate affects the development and function of dendritic cells generated from CD34+ peripheral blood progenitor cells. Blood 103:538–544. https://doi.org/10.1182/blood-2003-03-0975

    Article  CAS  PubMed  Google Scholar 

  21. Appel S, Rupf A, Weck MM et al (2005) Effects of imatinib on monocyte-derived dendritic cells are mediated by inhibition of nuclear factor-kappaB and Akt signaling pathways. Clin Cancer Res 11:1928–1940. https://doi.org/10.1158/1078-0432.CCR-04-1713

    Article  CAS  PubMed  Google Scholar 

  22. Wang H, Cheng F, Cuenca A et al (2005) Imatinib mesylate (STI-571) enhances antigen-presenting cell function and overcomes tumor-induced CD4+ T-cell tolerance. Blood 105:1135–1143. https://doi.org/10.1182/blood-2004-01-0027

    Article  CAS  PubMed  Google Scholar 

  23. Brossart P, Grunebach F, Stuhler G et al (1998) Generation of functional human dendritic cells from adherent peripheral blood monocytes by CD40 ligation in the absence of granulocyte-macrophage colony-stimulating factor. Blood 92:4238–4247

    CAS  PubMed  Google Scholar 

  24. Brossart P, Schneider A, Dill P et al (2001) The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res 61:6846–6850

    CAS  PubMed  Google Scholar 

  25. Salih J, Hilpert J, Placke T et al (2010) The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer 127:2119–2128. https://doi.org/10.1002/ijc.25233

    Article  CAS  PubMed  Google Scholar 

  26. Schwarzbich MA, Gutknecht M, Salih J et al (2012) The immune inhibitory receptor osteoactivin is upregulated in monocyte-derived dendritic cells by BCR-ABL tyrosine kinase inhibitors. Cancer Immunol Immunother 61:193–202. https://doi.org/10.1007/s00262-011-1096-1

    Article  CAS  PubMed  Google Scholar 

  27. Etienne G, Guilhot J, Rea D et al (2017) Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J Clin Oncol 35:298–305. https://doi.org/10.1200/JCO.2016.68.2914

    Article  PubMed  Google Scholar 

  28. Mahon FX, Rea D, Guilhot J et al (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11:1029–1035. https://doi.org/10.1016/S1470-2045(10)70233-3

    Article  CAS  PubMed  Google Scholar 

  29. Ross DM, Branford S, Seymour JF et al (2010) Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia 24:1719–1724. https://doi.org/10.1038/leu.2010.185

    Article  CAS  PubMed  Google Scholar 

  30. Chomel JC, Bonnet ML, Sorel N et al (2011) Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood 118:3657–3660. https://doi.org/10.1182/blood-2011-02-335497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ross DM, Branford S, Seymour JF et al. (2013) Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 122:515–522. https://doi.org/10.1182/blood-2013-02-483750

    Article  CAS  PubMed  Google Scholar 

  32. Rea D, Nicolini FE, Tulliez M et al. (2017) Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood 129:846–854. https://doi.org/10.1182/blood-2016-09-742205

    Article  CAS  PubMed  Google Scholar 

  33. Hsu FJ, Benike C, Fagnoni F et al. (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2:52–58

    Article  CAS  PubMed  Google Scholar 

  34. Small EJ, Fratesi P, Reese DM et al. (2000) Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 18:3894–3903. https://doi.org/10.1200/JCO.2000.18.23.3894

    Article  CAS  PubMed  Google Scholar 

  35. Small EJ, Schellhammer PF, Higano CS et al (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24:3089–3094. https://doi.org/10.1200/JCO.2005.04.5252

    Article  CAS  PubMed  Google Scholar 

  36. Higano CS, Schellhammer PF, Small EJ et al (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115:3670–3679. https://doi.org/10.1002/cncr.24429

    Article  CAS  PubMed  Google Scholar 

  37. Kantoff PW, Higano CS, Shore ND et al. (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422. https://doi.org/10.1056/NEJMoa1001294

    Article  CAS  PubMed  Google Scholar 

  38. Held SA, Duchardt KM, Tenzer S et al. (2013) Imatinib mesylate and nilotinib affect MHC-class I presentation by modulating the proteasomal processing of antigenic peptides. Cancer Immunol Immunother 62:715–726. https://doi.org/10.1007/s00262-012-1373-7

    Article  CAS  PubMed  Google Scholar 

  39. Schade AE, Schieven GL, Townsend R et al (2008) Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood 111:1366–1377. https://doi.org/10.1182/blood-2007-04-084814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weichsel R, Dix C, Wooldridge L et al (2008) Profound inhibition of antigen-specific T-cell effector functions by dasatinib. Clin Cancer Res 14:2484–2491. https://doi.org/10.1158/1078-0432.CCR-07-4393

    Article  CAS  PubMed  Google Scholar 

  41. Fraser CK, Blake SJ, Diener KR et al. (2009) Dasatinib inhibits recombinant viral antigen-specific murine CD4+ and CD8+ T-cell responses and NK-cell cytolytic activity in vitro and in vivo. Exp Hematol 37:256–265. https://doi.org/10.1016/j.exphem.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  42. Fei F, Yu Y, Schmitt A et al. (2008) Dasatinib exerts an immunosuppressive effect on CD8+ T cells specific for viral and leukemia antigens. Exp Hematol 36:1297–1308. https://doi.org/10.1016/j.exphem.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  43. Curtsinger JM, Mescher MF (2010) Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol 22:333–340. https://doi.org/10.1016/j.coi.2010.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boissel N, Rousselot P, Raffoux E et al. (2006) Imatinib mesylate minimally affects bcr-abl + and normal monocyte-derived dendritic cells but strongly inhibits T cell expansion despite reciprocal dendritic cell-T cell activation. J Leukoc Biol. 79:747–756. https://doi.org/10.1189/jlb.0705419

    Article  CAS  PubMed  Google Scholar 

  45. Hadzijusufovic E, Albrecht-Schgoer K, Huber K et al (2017) Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia 31:2388–2397. https://doi.org/10.1038/leu.2017.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Medard G, Pachl F, Ruprecht B et al (2015) Optimized chemical proteomics assay for kinase inhibitor profiling. J Proteome Res 14:1574–1586. https://doi.org/10.1021/pr5012608

    Article  CAS  PubMed  Google Scholar 

  47. Zitvogel L, Rusakiewicz S, Routy B et al. (2016) Immunological off-target effects of imatinib. Nat Rev Clin Oncol 13:431–446. https://doi.org/10.1038/nrclinonc.2016.41

    Article  CAS  PubMed  Google Scholar 

  48. Pautier P, Locher C, Robert C et al (2013) Phase I clinical trial combining imatinib mesylate and IL-2 in refractory cancer patients: IL-2 interferes with the pharmacokinetics of imatinib mesylate. Oncoimmunology 2:e23079. https://doi.org/10.4161/onci.23079

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Sylvia Klein for excellent technical assistance as well as Lothar Kanz for critical reading of the manuscript.

Funding

Susanne M. Rittig was supported by the Deutsche Krebshilfe (Grant 109046), Wilhelm Sander Stiftung (Grant 2013.148.1) as well as the European Social Fund.

Author information

Authors and Affiliations

Authors

Contributions

SMR, CJL, SJ, TF, MG, JS, JG, and SM designed and performed the experiments and analyzed data. DD, KNK, SMR, and HRS analyzed data and wrote the manuscript. MRM, H-GK, HRS, FG designed research, analyzed data and provided important advice.

Corresponding author

Correspondence to Susanne M. Rittig.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

This study was approved by the local institutional review board (344/2008BO2; Ethics Committee at the Medical Faculty and at the University Hospital Tübingen). Buffy coat preparations were produced by the local blood bank after obtaining informed consent, in accordance with the principles of the Declaration of Helsinki and its later amendments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 270 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörfel, D., Lechner, C.J., Joas, S. et al. The BCR-ABL inhibitor nilotinib influences phenotype and function of monocyte-derived human dendritic cells. Cancer Immunol Immunother 67, 775–783 (2018). https://doi.org/10.1007/s00262-018-2129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2129-9

Keywords

Navigation