Skip to main content

Advertisement

Log in

MDSCs in infectious diseases: regulation, roles, and readjustment

  • Symposium-in-Writing Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Many pathogens, ranging from viruses to multicellular parasites, promote expansion of MDSCs, which are myeloid cells that exhibit immunosuppressive features. The roles of MDSCs in infection depend on the class and virulence mechanisms of the pathogen, the stage of the disease, and the pathology associated with the infection. This work compiles evidence supported by functional assays on the roles of different subsets of MDSCs in acute and chronic infections, including pathogen-associated malignancies, and discusses strategies to modulate MDSC dynamics to benefit the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Arg:

Arginase

Arm:

Armstrong

ATRA:

All-trans retinoic acid

B. fragilis :

Bacteroides fragilis

C. albicans :

Candida albicans

C13:

Clone 13

CCR:

C-C Chemokine receptor

COST:

European Cooperation in Science and Technology

EBV:

Epstein Barr virus

ETBF:

Enterotoxigenic Bacteroides fragilis

FV:

Friend virus

H. felis:

Helicobacter felis

H. polygyrus :

Heligmosomoides polygyrus

HbsAg:

HBV surface antigen

HDT:

Host-directed therapy

IAV:

Influenza A virus

iNKT:

Invariant NK T

JEV:

Japanese encephalitis virus

K. pneumoniae:

Klebsiella pneumoniae

L. major :

Leishmania major

LCMV:

Lymphocytic choriomeningitis virus

LOX:

Lipoxygenase

Mφ:

Macrophage

M-MDSC:

Monocytic MDSC

M. tuberculosis:

Mycobacterium tuberculosis

MR:

Mannose receptor

MRC:

Myeloid regulatory cell

mTOR:

Mammalian target of rapamycin

NADPH:

Nicotinamide adenine dinucleotide phosphate

NOS:

NO synthase

P. aeruginosa:

Pseudomonas aeruginosa

PcP:

Pneumocystis pneumonia

PDE:

Phosphodiesterase

PGE2:

Prostaglandin E2

PMN-MDSC:

Neutrophil-like MDSC

ROS:

Reactive oxygen species

S. aureus :

Staphylococcus aureus

SIV:

Simian immunodeficiency virus

T. crassiceps :

Taenia crassiceps

T. cruzi :

Trypanosoma cruzi

T. gondii :

Toxoplasma gondii

TB:

Tuberculosis

Tfh:

T Follicular helper

References

  1. Bronte V, Brandau S, Chen S-H et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150. https://doi.org/10.1038/ncomms12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bruger AM, Dorhoi A, Esendagli G et al (2018) How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-018-2170-8

    Article  PubMed  Google Scholar 

  3. Skabytska Y, Wölbing F, Günther C et al (2014) Cutaneous innate immune sensing of toll-like receptor 2–6 ligands suppresses T cell immunity by inducing myeloid-derived suppressor cells. Immunity 41:762–775. https://doi.org/10.1016/J.IMMUNI.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  4. Arora M, Poe SL, Oriss TB et al (2010) TLR4/MyD88-induced CD11b+ Gr-1 int F4/80+ non-migratory myeloid cells suppress Th2 effector function in the lung. Mucosal Immunol 3:578–593. https://doi.org/10.1038/mi.2010.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rieber N, Brand A, Hector A et al (2013) Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol 190:1276–1284. https://doi.org/10.4049/jimmunol.1202144

    Article  CAS  PubMed  Google Scholar 

  6. Ren JP, Zhao J, Dai J et al (2016) Hepatitis C virus-induced myeloid-derived suppressor cells regulate T-cell differentiation and function via the signal transducer and activator of transcription 3 pathway. Immunology 148:377–386. https://doi.org/10.1111/imm.12616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhai N, Li H, Song H et al (2017) Hepatitis C virus induces MDSCs-like monocytes through TLR2/PI3K/AKT/STAT3 signaling. PLoS One 12:e0170516. https://doi.org/10.1371/journal.pone.0170516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tacke RS, Lee H-C, Goh C et al (2012) Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology 55:343–353. https://doi.org/10.1002/hep.24700

    Article  CAS  PubMed  Google Scholar 

  9. Goh CC, Roggerson KM, Lee H-C et al (2016) Hepatitis C virus-induced myeloid-derived suppressor cells suppress NK cell IFN-γ production by altering cellular metabolism via arginase-1. J Immunol 196:2283–2292. https://doi.org/10.4049/jimmunol.1501881

    Article  CAS  PubMed  Google Scholar 

  10. Fang Z, Li J, Yu X et al (2015) Polarization of monocytic myeloid-derived suppressor cells by hepatitis B surface antigen is mediated via ERK/IL-6/STAT3 signaling feedback and restrains the activation of T cells in chronic hepatitis B virus infection. J Immunol 195:4873–4883. https://doi.org/10.4049/jimmunol.1501362

    Article  CAS  PubMed  Google Scholar 

  11. Garg A, Spector SA (2014) HIV type 1 gp120-induced expansion of myeloid derived suppressor cells is dependent on interleukin 6 and suppresses immunity. J Infect Dis 209:441–451. https://doi.org/10.1093/infdis/jit469

    Article  CAS  PubMed  Google Scholar 

  12. Dorhoi A, Du Plessis N (2018) Monocytic myeloid-derived suppressor cells in chronic infections. Front Immunol 8:1895. https://doi.org/10.3389/fimmu.2017.01895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Santo C, Salio M, Masri SH et al (2008) Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 118:4036–4048. https://doi.org/10.1172/JCI36264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeisy-Scott V, Davis WG, Patel JR et al (2011) Increased MDSC accumulation and Th2 biased response to influenza A virus infection in the absence of TLR7 in mice. PLoS One 6:e25242. https://doi.org/10.1371/journal.pone.0025242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rieber N, Singh A, Öz H et al (2015) Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells. Cell Host Microbe 17:507–514. https://doi.org/10.1016/j.chom.2015.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Albeituni SH, Ding C, Liu M et al (2016) Yeast-derived particulate β-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancer. J Immunol 196:2167–2180. https://doi.org/10.4049/jimmunol.1501853

    Article  CAS  PubMed  Google Scholar 

  17. Gomez-Garcia L, Lopez-Marin LM, Saavedra R et al (2005) Intact glycans from cestode antigens are involved in innate activation of myeloid suppressor cells. Parasite Immunol 27:395–405. https://doi.org/10.1111/j.1365-3024.2005.00790.x

    Article  CAS  PubMed  Google Scholar 

  18. Terrazas LI, Walsh KL, Piskorska D et al (2001) The schistosome oligosaccharide lacto-N-neotetraose expands Gr1(+) cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4(+) cells: a potential mechanism for immune polarization in helminth infections. J Immunol 167:5294–5303

    Article  CAS  PubMed  Google Scholar 

  19. Atochina O, Daly-Engel T, Piskorska D et al (2001) A schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Gr1(+) macrophages that suppress naive CD4(+) T cell proliferation via an IFN-gamma and nitric oxide-dependent mechanism. J Immunol 167:4293–4302

    Article  CAS  PubMed  Google Scholar 

  20. Wagner A, Schabussova I, Drinic M et al (2016) Oocyst-derived extract of Toxoplasma gondii serves as potent immunomodulator in a mouse model of birch pollen allergy. PLoS One 11:e0155081. https://doi.org/10.1371/journal.pone.0155081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ost M, Singh A, Peschel A et al (2016) Myeloid-derived suppressor cells in bacterial infections. Front Cell Infect Microbiol 6:37. https://doi.org/10.3389/fcimb.2016.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. https://doi.org/10.1038/nri2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 19:108–119. https://doi.org/10.1038/s41590-017-0022-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arocena AR, Onofrio LI, Pellegrini AV et al (2014) Myeloid-derived suppressor cells are key players in the resolution of inflammation during a model of acute infection. Eur J Immunol 44:184–194. https://doi.org/10.1002/eji.201343606

    Article  CAS  PubMed  Google Scholar 

  25. Sander LE, Sackett SD, Dierssen U et al (2010) Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J Exp Med 207:1453–1464. https://doi.org/10.1084/jem.20091474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ribechini E, Hutchinson JA, Hergovits S et al (2017) Novel GM-CSF signals via IFN-γR/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Adv 1:947–960. https://doi.org/10.1182/bloodadvances.2017006858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haverkamp JM, Smith AM, Weinlich R et al (2014) Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways. Immunity 41:947–959. https://doi.org/10.1016/j.immuni.2014.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang C, Zhang N, Qi L et al (2017) Myeloid-derived suppressor cells inhibit T follicular helper cell immune response in japanese encephalitis virus infection. J Immunol 199:3094–3105. https://doi.org/10.4049/jimmunol.1700671

    Article  CAS  PubMed  Google Scholar 

  29. Drabczyk-Pluta M, Werner T, Hoffmann D et al (2017) Granulocytic myeloid-derived suppressor cells suppress virus-specific CD8+ T cell responses during acute friend retrovirus infection. Retrovirology 14:42. https://doi.org/10.1186/s12977-017-0364-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Voisin M-B, Buzoni-Gatel D, Bout D, Velge-Roussel F (2004) Both expansion of regulatory GR1+ CD11b+ myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis. Infect Immun 72:5487–5492. https://doi.org/10.1128/IAI.72.9.5487-5492.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Darcy CJ, Minigo G, Piera KA et al (2014) Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. Crit Care 18:R163. https://doi.org/10.1186/cc14003

    Article  PubMed  PubMed Central  Google Scholar 

  32. Janols H, Bergenfelz C, Allaoui R et al (2014) A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in Gram-positive cases. J Leukoc Biol 96:685–693. https://doi.org/10.1189/jlb.5HI0214-074R

    Article  CAS  PubMed  Google Scholar 

  33. Uhel F, Azzaoui I, Grégoire M et al (2017) Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. Am J Respir Crit Care Med 196:315–327. https://doi.org/10.1164/rccm.201606-1143OC

    Article  CAS  PubMed  Google Scholar 

  34. Delano MJ, Scumpia PO, Weinstein JS et al (2007) MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204:1463–1474. https://doi.org/10.1084/jem.20062602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poe SL, Arora M, Oriss TB et al (2013) STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia. Mucosal Immunol 6:189–199. https://doi.org/10.1038/mi.2012.62

    Article  CAS  PubMed  Google Scholar 

  36. Cuervo H, Guerrero NA, Carbajosa S et al (2011) Myeloid-derived suppressor cells infiltrate the heart in acute Trypanosoma cruzi infection. J Immunol 187:2656–2665. https://doi.org/10.4049/jimmunol.1002928

    Article  CAS  PubMed  Google Scholar 

  37. Sanmarco LM, Visconti LM, Eberhardt N et al (2016) IL-6 improves the nitric oxide-induced cytotoxic CD8+ T cell dysfunction in human chagas disease. Front Immunol 7:626. https://doi.org/10.3389/fimmu.2016.00626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nathan C, Ding A (2010) Nonresolving Inflammation. Cell 140:871–882. https://doi.org/10.1016/j.cell.2010.02.029

    Article  CAS  PubMed  Google Scholar 

  39. White MK, Pagano JS, Khalili K (2014) Viruses and human cancers: a long road of discovery of molecular paradigms. Clin Microbiol Rev 27:463–481. https://doi.org/10.1128/CMR.00124-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang AH, Parsonnet J (2010) Role of bacteria in oncogenesis. Clin Microbiol Rev 23:837–857. https://doi.org/10.1128/CMR.00012-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Tong H, Brindley PJ, Meyer CG, Velavan TP (2017) Parasite infection, carcinogenesis and human malignancy. EBioMedicine 15:12–23. https://doi.org/10.1016/j.ebiom.2016.11.034

    Article  PubMed  Google Scholar 

  42. Yang B, Wang X, Jiang J et al (2014) Identification of CD244-expressing myeloid-derived suppressor cells in patients with active tuberculosis. Immunol Lett 158:66–72. https://doi.org/10.1016/j.imlet.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  43. du Plessis N, Loebenberg L, Kriel M et al (2013) Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent Mycobacterium tuberculosis infection suppresses T-cell function. Am J Respir Crit Care Med 188:724–732. https://doi.org/10.1164/rccm.201302-0249OC

    Article  CAS  PubMed  Google Scholar 

  44. El Daker S, Sacchi A, Tempestilli M et al (2015) Granulocytic myeloid derived suppressor cells expansion during active pulmonary tuberculosis is associated with high nitric oxide plasma level. PLoS One 10:e0123772. https://doi.org/10.1371/journal.pone.0123772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Knaul JK, Jörg S, Oberbeck-Mueller D et al (2014) Lung-residing myeloid-derived suppressors display dual functionality in murine pulmonary tuberculosis. Am J Respir Crit Care Med 190:1053–1066. https://doi.org/10.1164/rccm.201405-0828OC

    Article  CAS  PubMed  Google Scholar 

  46. Tsiganov EN, Verbina EM, Radaeva TV et al (2014) Gr-1dimCD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice. J Immunol 192:4718–4727. https://doi.org/10.4049/jimmunol.1301365

    Article  CAS  PubMed  Google Scholar 

  47. Gupta S, Cheung L, Pokkali S et al (2017) Suppressor cell-depleting immunotherapy with denileukin diftitox is an effective host-directed therapy for tuberculosis. J Infect Dis 215:1883–1887. https://doi.org/10.1093/infdis/jix208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heim CE, Vidlak D, Scherr TD et al (2014) Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J Immunol 192:3778–3792. https://doi.org/10.4049/jimmunol.1303408

    Article  CAS  PubMed  Google Scholar 

  49. Ding L, Hayes MM, Photenhauer A et al (2016) Schlafen 4–expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia. J Clin Invest 126:2867–2880. https://doi.org/10.1172/JCI82529

    Article  PubMed  PubMed Central  Google Scholar 

  50. Thiele Orberg E, Fan H, Tam AJ et al (2017) The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol 10:421–433. https://doi.org/10.1038/mi.2016.53

    Article  CAS  PubMed  Google Scholar 

  51. Norris BA, Uebelhoer LS, Nakaya HI et al (2013) Chronic but not acute virus infection induces sustained expansion of myeloid suppressor cell numbers that inhibit viral-specific T cell immunity. Immunity 38:309–321. https://doi.org/10.1016/j.immuni.2012.10.022

    Article  CAS  PubMed  Google Scholar 

  52. Green KA, Cook WJ, Green WR (2013) Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency. J Virol 87:2058–2071. https://doi.org/10.1128/JVI.01547-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alaoui L, Palomino G, Zurawski S et al (2017) Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs. Cell Mol Life Sci 1–17. https://doi.org/10.1007/s00018-017-2712-9

  54. Huot N, Rascle P, Garcia-Tellez T et al (2016) Innate immune cell responses in non pathogenic versus pathogenic SIV infections. Curr Opin Virol 19:37–44. https://doi.org/10.1016/j.coviro.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Z-N, Yi N, Zhang T-W et al (2017) Myeloid-derived suppressor cells associated with disease progression in primary HIV infection. JAIDS J Acquir Immune Defic Syndr 76:200–208. https://doi.org/10.1097/QAI.0000000000001471

    Article  PubMed  Google Scholar 

  56. Vollbrecht T, Stirner R, Tufman A et al (2012) Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS 26:F31–F37. https://doi.org/10.1097/QAD.0b013e328354b43f

    Article  CAS  PubMed  Google Scholar 

  57. Tumino N, Turchi F, Meschi S et al (2015) In HIV-positive patients, myeloid-derived suppressor cells induce T-cell anergy by suppressing CD3 ζ expression through ELF-1 inhibition. AIDS 29:2397–2407. https://doi.org/10.1097/QAD.0000000000000871

    Article  CAS  PubMed  Google Scholar 

  58. Qin A, Cai W, Pan T et al (2013) Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol 87:1477–1490. https://doi.org/10.1128/JVI.01759-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gama L, Shirk EN, Russell JN et al (2012) Expansion of a subset of CD14highCD16negCCR2low/neg monocytes functionally similar to myeloid-derived suppressor cells during SIV and HIV infection. J Leukoc Biol 91:803–816. https://doi.org/10.1189/jlb.1111579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dross SE, Munson PV, Kim SE et al (2017) Kinetics of myeloid-derived suppressor cell frequency and function during simian immunodeficiency virus infection, combination antiretroviral therapy, and treatment interruption. J Immunol 198:757–766. https://doi.org/10.4049/jimmunol.1600759

    Article  CAS  PubMed  Google Scholar 

  61. Cai W, Qin A, Guo P et al (2013) Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients. J Clin Immunol 33:798–808. https://doi.org/10.1007/s10875-012-9861-2

    Article  CAS  PubMed  Google Scholar 

  62. Zeng Q-L, Yang B, Sun H-Q et al (2014) Myeloid-derived suppressor cells are associated with viral persistence and downregulation of TCR ζ chain expression on CD8(+) T cells in chronic hepatitis C patients. Mol Cells 37:66–73. https://doi.org/10.14348/molcells.2014.2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nonnenmann J, Stirner R, Roider J et al (2014) Lack of significant elevation of myeloid-derived suppressor cells in peripheral blood of chronically hepatitis C virus-infected individuals. J Virol 88:7678–7682. https://doi.org/10.1128/JVI.00113-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang A, Zhang B, Yan W et al (2014) Myeloid-derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1-induced IL-10. J Immunol 193:5461–5469. https://doi.org/10.4049/jimmunol.1400849

    Article  CAS  PubMed  Google Scholar 

  65. Chen S, Akbar SMF, Abe M et al (2011) Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin Exp Immunol 166:134–142. https://doi.org/10.1111/j.1365-2249.2011.04445.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kong X, Sun R, Chen Y et al (2014) γδT cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol 193:1645–1653. https://doi.org/10.4049/jimmunol.1303432

    Article  CAS  PubMed  Google Scholar 

  67. Pallett LJ, Gill US, Quaglia A et al (2015) Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat Med 21:591–600. https://doi.org/10.1038/nm.3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cesarman E (2014) Gammaherpesviruses and lymphoproliferative disorders. Annu Rev Pathol Mech Dis 9:349–372. https://doi.org/10.1146/annurev-pathol-012513-104656

    Article  CAS  Google Scholar 

  69. Romano A, Parrinello NL, Vetro C et al (2015) Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin Lymphoma patients treated up-front with a risk-adapted strategy. Br J Haematol 168:689–700. https://doi.org/10.1111/bjh.13198

    Article  CAS  PubMed  Google Scholar 

  70. Zhang H, Li Z-L, Ye S-B et al (2015) Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunol Immunother 64:1587–1599. https://doi.org/10.1007/s00262-015-1765-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cai T-T, Ye S-B, Liu Y-N et al (2017) LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLOS Pathog 13:e1006503. https://doi.org/10.1371/journal.ppat.1006503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maizels RM, McSorley HJ (2016) Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol 138:666–675. https://doi.org/10.1016/j.jaci.2016.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang Q, Qiu H, Xie H et al (2017) A Schistosoma japonicum infection promotes the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. J Immunol 198:4716–4727. https://doi.org/10.4049/jimmunol.1601860

    Article  CAS  PubMed  Google Scholar 

  74. Valanparambil RM, Tam M, Jardim A et al (2017) Primary Heligmosomoides polygyrus bakeri infection induces myeloid-derived suppressor cells that suppress CD4+ Th2 responses and promote chronic infection. Mucosal Immunol 10:238–249. https://doi.org/10.1038/mi.2016.36

    Article  CAS  PubMed  Google Scholar 

  75. Van Ginderachter JA, Beschin A, De Baetselier P, Raes G (2010) Myeloid-derived suppressor cells in parasitic infections. Eur J Immunol 40:2976–2985. https://doi.org/10.1002/eji.201040911

    Article  CAS  PubMed  Google Scholar 

  76. Brys L, Beschin A, Raes G et al (2005) Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol 174:6095–6104. https://doi.org/10.4049/jimmunol.174.10.6095

    Article  CAS  PubMed  Google Scholar 

  77. Pereira WF, Ribeiro-Gomes FL, Guillermo LVC et al (2011) Myeloid-derived suppressor cells help protective immunity to Leishmania major infection despite suppressed T cell responses. J Leukoc Biol 90:1191–1197. https://doi.org/10.1189/jlb.1110608

    Article  CAS  PubMed  Google Scholar 

  78. Schmid M, Zimara N, Wege AK, Ritter U (2014) Myeloid-derived suppressor cell functionality and interaction with Leishmania major parasites differ in C57BL/6 and BALB/c mice. Eur J Immunol 44:3295–3306. https://doi.org/10.1002/eji.201344335

    Article  CAS  PubMed  Google Scholar 

  79. Singh A, Lelis F, Braig S et al (2016) Differential regulation of myeloid-derived suppressor cells by Candida species. Front Microbiol 7:1624. https://doi.org/10.3389/fmicb.2016.01624

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang C, Lei G-S, Shao S et al (2012) Accumulation of myeloid-derived suppressor cells in the lungs during Pneumocystis pneumonia. Infect Immun 80:3634–3641. https://doi.org/10.1128/IAI.00668-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lei G-S, Zhang C, Shao S et al (2013) All-trans retinoic acid in combination with primaquine clears pneumocystis infection. PLoS One 8:e53479. https://doi.org/10.1371/journal.pone.0053479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lei G-S, Zhang C, Lee C-H (2015) Myeloid-derived suppressor cells impair alveolar macrophages through PD-1 receptor ligation during Pneumocystis pneumonia. Infect Immun 83:572–582. https://doi.org/10.1128/IAI.02686-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sui Y, Frey B, Wang Y et al (2017) Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques. PLoS Pathog 13:e1006395. https://doi.org/10.1371/journal.ppat.1006395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Keller C, Hoffmann R, Lang R et al (2006) Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun 74:4295–4309. https://doi.org/10.1128/IAI.00057-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eruslanov EB, Lyadova IV, Kondratieva TK et al (2005) Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun 73:1744–1753. https://doi.org/10.1128/IAI.73.3.1744-1753.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tebartz C, Horst SA, Sparwasser T et al (2015) A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection. J Immunol 194:1100–1111. https://doi.org/10.4049/jimmunol.1400196

    Article  CAS  PubMed  Google Scholar 

  87. Mourik BC, Leenen PJM, de Knegt GJ et al (2017) Immunotherapy added to antibiotic treatment reduces relapse of disease in a mouse model of tuberculosis. Am J Respir Cell Mol Biol 56:233–241. https://doi.org/10.1165/rcmb.2016-0185OC

    Article  CAS  PubMed  Google Scholar 

  88. Chandra D, Quispe-Tintaya W, Jahangir A et al (2014) STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol Res 2:901–910. https://doi.org/10.1158/2326-6066.CIR-13-0123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu F, Li X, Lu C et al (2016) Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget 7:83907–83925. https://doi.org/10.18632/oncotarget.13438

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tavazoie MF, Pollack I, Tanqueco R et al (2018) LXR/ApoE activation restricts innate immune suppression in cancer. Cell 172:825–840.e18. https://doi.org/10.1016/j.cell.2017.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ahidjo BA, Bishai WR (2016) Phosphodiesterase inhibitors as adjunctive therapies for tuberculosis. EBioMedicine 4:7–8. https://doi.org/10.1016/j.ebiom.2016.02.016

    Article  PubMed  PubMed Central  Google Scholar 

  92. Obregón-Henao A, Henao-Tamayo M, Orme IM, Ordway DJ (2013) Gr1(int)CD11b+ myeloid-derived suppressor cells in Mycobacterium tuberculosis infection. PLoS One 8:e80669. https://doi.org/10.1371/journal.pone.0080669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vilaplana C, Marzo E, Tapia G et al (2013) Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J Infect Dis 208:199–202. https://doi.org/10.1093/infdis/jit152

    Article  CAS  PubMed  Google Scholar 

  94. Zhang S, Wu K, Liu Y et al (2016) Finasteride Enhances the generation of human myeloid-derived suppressor cells by up-regulating the COX2/PGE2 pathway. PLoS One 11:e0156549. https://doi.org/10.1371/journal.pone.0156549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rieber N, Gille C, Köstlin N et al (2013) Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clin Exp Immunol 174:45–52. https://doi.org/10.1111/cei.12143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Flores RR, Clauson CL, Cho J et al (2017) Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism. Aging Cell 16:480–487. https://doi.org/10.1111/acel.12571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ronnie Grant (University of Edinburgh) for figure editing.

Funding

This work was supported by European Cooperation in Science and Technology (COST) and the COST Action BM1404 Mye-EUNITER (http://www.mye-euniter.eu). COST is part of the European Union Framework Programme Horizon 2020. Estibaliz Glaría is supported by a fellowship from the University of Barcelona (Ajuts de Personal Investigador predoctoral en Formació, APIF); Thalia Garcia-Tellez is supported by the Institut Carnot Pasteur Maladie Infectieuses (ANR 11-CARN 017-01) as part of the Pasteur—Paris University (PPU) International PhD Program and by Sidaction.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing of the original draft: all authors. Figure design: AD, EG, TG-T, and AFV. Revisions and editing: AD, NEN, CG, and AFV. Supervision: AD and AFV. All authors approved the final version of this paper.

Corresponding authors

Correspondence to Anca Dorhoi or Annabel F. Valledor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 144 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorhoi, A., Glaría, E., Garcia-Tellez, T. et al. MDSCs in infectious diseases: regulation, roles, and readjustment. Cancer Immunol Immunother 68, 673–685 (2019). https://doi.org/10.1007/s00262-018-2277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2277-y

Keywords

Navigation