Skip to main content

Advertisement

Log in

Comparison of IL-2 vs IL-7/IL-15 for the generation of NY-ESO-1-specific T cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The anti-tumor efficacy of TCR-engineered T cells in vivo depends largely on less-differentiated subsets such as T cells with naïve-like T cell (TN) phenotypes with greater expansion and long-term persistence. To increase these subsets, we compared the generation of New York esophageal squamous cell carcinoma-1 (NY-ESO-1)-specific T cells under supplementation with either IL-2 or IL-7/IL-15. PBMCs were transduced with MS3II-NY-ESO-1-siTCR retroviral vector. T cell generation was adapted from a CD19-specific CART cell production protocol. Comparable results in viability, expansion and transduction efficiency of T cells under stimulation with either IL-2 or IL-7/IL-15 were observed. IL-7/IL-15 led to an increase of CD4+ T cells and a decrease of CD8+ T cells, enriched the amount of TN among CD4+ T cells but not among CD8+ T cells. In a 51Cr release assay, similar specific lysis of NY-ESO-1-positive SW982 sarcoma cells was achieved. However, intracellular cytokine staining revealed a significantly increased production of IFN-γ and TNF-α in T cells generated by IL-2 stimulation. To validate these unexpected findings, NY-ESO-1-specific T cell production was evaluated in another protocol originally established for TCR-engineered T cells. IL-7/IL-15 increased the proportion of TN. However, the absolute number of TN did not increase due to a significantly slower expansion of T cells with IL-7/IL-15. In conclusion, IL-7/IL-15 does not seem to be superior to IL-2 for the generation of NY-ESO-1-specific T cells. This is in sharp contrast to the observations in CD19-specific CART cells. Changes of cytokine cocktails should be carefully evaluated for individual vector systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

51Cr:

Chromium-51

ACD-A:

Anticoagulant citrate dextrose solution

ACT:

Adoptive cell therapy

HDs:

Healthy donors

NY-ESO-1:

New York esophageal squamous cell carcinoma-1

TCM :

Central memory-like T cell(s)

TE :

Effector-like T cell(s)

TEM :

Effector memory-like T cell(s)

Th cells:

T helper cells

TN :

Naïve-like T cell(s)

TSCM :

Stem cell memory T cell(s)

References

  1. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68. https://doi.org/10.1126/science.aaa4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kunert A, Straetemans T, Govers C, Lamers C, Mathijssen R, Sleijfer S, Debets R (2013) TCR-engineered T cells meet new challenges to treat solid tumors: choice of antigen, T cell fitness, and sensitization of tumor milieu. Front Immunol 4:363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Park TS, Groh EM, Patel K, Kerkar SP, Lee CC, Rosenberg SA (2016) Expression of MAGE-A and NY-ESO-1 in primary and metastatic cancers. J Immunother 39(1):1–7. https://doi.org/10.1097/cji.0000000000000101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barrow C, Browning J, MacGregor D, Davis ID, Sturrock S, Jungbluth AA, Cebon J (2006) Tumor antigen expression in melanoma varies according to antigen and stage. Clin Cancer Res 12(3 Pt 1):764–771. https://doi.org/10.1158/1078-0432.Ccr-05-1544

    Article  CAS  PubMed  Google Scholar 

  5. Endo M, de Graaff MA, Ingram DR, Lim S, Lev DC, Briaire-de Bruijn IH, Somaiah N, Bovee JV, Lazar AJ, Nielsen TO (2015) NY-ESO-1 (CTAG1B) expression in mesenchymal tumors. Mod Pathol 28(4):587–595. https://doi.org/10.1038/modpathol.2014.155

    Article  CAS  PubMed  Google Scholar 

  6. Lai JP, Robbins PF, Raffeld M, Aung PP, Tsokos M, Rosenberg SA, Miettinen MM, Lee CC (2012) NY-ESO-1 expression in synovial sarcoma and other mesenchymal tumors: significance for NY-ESO-1-based targeted therapy and differential diagnosis. Mod Pathol 25(6):854–858. https://doi.org/10.1038/modpathol.2012.31

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schmitt M, Huckelhoven AG, Hundemer M, Schmitt A, Lipp S, Emde M, Salwender H, Hanel M, Weisel K, Bertsch U, Durig J, Ho AD, Blau IW, Goldschmidt H, Seckinger A, Hose D (2017) Frequency of expression and generation of T-cell responses against antigens on multiple myeloma cells in patients included in the GMMG-MM5 trial. Oncotarget 8(49):84847–84862. https://doi.org/10.18632/oncotarget.11215

    Article  PubMed  Google Scholar 

  8. van Rhee F, Szmania SM, Zhan F, Gupta SK, Pomtree M, Lin P, Batchu RB, Moreno A, Spagnoli G, Shaughnessy J, Tricot G (2005) NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 105(10):3939–3944. https://doi.org/10.1182/blood-2004-09-3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917

    Article  PubMed  PubMed Central  Google Scholar 

  10. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129. https://doi.org/10.1126/science.1129003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, Yang JC, Dudley ME, Wunderlich JR, Sherry RM, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Li YF, El-Gamil M, Rosenberg SA (2015) A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res 21(5):1019–1027. https://doi.org/10.1158/1078-0432.Ccr-14-2708

    Article  CAS  PubMed  Google Scholar 

  12. D’Angelo SP, Melchiori L, Merchant MS, Bernstein D, Glod J, Kaplan R, Grupp S, Tap WD, Chagin K, Binder GK, Basu S, Lowther DE, Wang R, Bath N, Tipping A, Betts G, Ramachandran I, Navenot JM, Zhang H, Wells DK, Van Winkle E, Kari G, Trivedi T, Holdich T, Pandite L, Amado R, Mackall CL (2018) Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 (c259)T cells in synovial sarcoma. Cancer Discov 8(8):944–957. https://doi.org/10.1158/2159-8290.Cd-17-1417

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, Badros AZ, Garfall A, Weiss B, Finklestein J, Kulikovskaya I, Sinha SK, Kronsberg S, Gupta M, Bond S, Melchiori L, Brewer JE, Bennett AD, Gerry AB, Pumphrey NJ, Williams D, Tayton-Martin HK, Ribeiro L, Holdich T, Yanovich S, Hardy N, Yared J, Kerr N, Philip S, Westphal S, Siegel DL, Levine BL, Jakobsen BK, Kalos M, June CH (2015) NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 21(8):914–921. https://doi.org/10.1038/nm.3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock J (2018) NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol 9:947. https://doi.org/10.3389/fimmu.2018.00947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Woloszynska-Read A, Mhawech-Fauceglia P, Yu J, Odunsi K, Karpf AR (2008) Intertumor and intratumor NY-ESO-1 expression heterogeneity is associated with promoter-specific and global DNA methylation status in ovarian cancer. Clin Cancer Res 14(11):3283–3290. https://doi.org/10.1158/1078-0432.Ccr-07-5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ochi T, Fujiwara H, Okamoto S, An J, Nagai K, Shirakata T, Mineno J, Kuzushima K, Shiku H, Yasukawa M (2011) Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood 118(6):1495–1503. https://doi.org/10.1182/blood-2011-02-337089

    Article  CAS  PubMed  Google Scholar 

  17. Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ, Reik A, Chu V, Paschon DE, Zhang L, Kuball J, Camisa B, Bondanza A, Casorati G, Ponzoni M, Ciceri F, Bordignon C, Greenberg PD, Holmes MC, Gregory PD, Naldini L, Bonini C (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 18(5):807–815. https://doi.org/10.1038/nm.2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmid DA, Irving MB, Posevitz V, Hebeisen M, Posevitz-Fejfar A, Sarria JC, Gomez-Eerland R, Thome M, Schumacher TN, Romero P, Speiser DE, Zoete V, Michielin O, Rufer N (2010) Evidence for a TCR affinity threshold delimiting maximal CD8 T cell function. J Immunol 184(9):4936–4946. https://doi.org/10.4049/jimmunol.1000173

    Article  CAS  PubMed  Google Scholar 

  19. Govers C, Sebestyen Z, Roszik J, van Brakel M, Berrevoets C, Szoor A, Panoutsopoulou K, Broertjes M, Van T, Vereb G, Szollosi J, Debets R (2014) TCRs genetically linked to CD28 and CD3epsilon do not mispair with endogenous TCR chains and mediate enhanced T cell persistence and anti-melanoma activity. J Immunol 193(10):5315–5326. https://doi.org/10.4049/jimmunol.1302074

    Article  CAS  PubMed  Google Scholar 

  20. Hinrichs CS, Borman ZA, Cassard L, Gattinoni L, Spolski R, Yu Z, Sanchez-Perez L, Muranski P, Kern SJ, Logun C, Palmer DC, Ji Y, Reger RN, Leonard WJ, Danner RL, Rosenberg SA, Restifo NP (2009) Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc Natl Acad Sci USA 106(41):17469–17474. https://doi.org/10.1073/pnas.0907448106

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klebanoff CA, Scott CD, Leonardi AJ, Yamamoto TN, Cruz AC, Ouyang C, Ramaswamy M, Roychoudhuri R, Ji Y, Eil RL, Sukumar M, Crompton JG, Palmer DC, Borman ZA, Clever D, Thomas SK, Patel S, Yu Z, Muranski P, Liu H, Wang E, Marincola FM, Gros A, Gattinoni L, Rosenberg SA, Siegel RM, Restifo NP (2016) Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J Clin Invest 126(1):318–334. https://doi.org/10.1172/jci81217

    Article  PubMed  Google Scholar 

  23. Cui G, Staron MM, Gray SM, Ho PC, Amezquita RA, Wu J, Kaech SM (2015) IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161(4):750–761. https://doi.org/10.1016/j.cell.2015.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, Bondanza A, Bordignon C, Peccatori J, Ciceri F, Lupo-Stanghellini MT, Mavilio F, Mondino A, Bicciato S, Recchia A, Bonini C (2013) IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121(4):573–584. https://doi.org/10.1182/blood-2012-05-431718

    Article  CAS  PubMed  Google Scholar 

  25. Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, Liu H, Creighton CJ, Gee AP, Heslop HE, Rooney CM, Savoldo B, Dotti G (2014) Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123(24):3750–3759. https://doi.org/10.1182/blood-2014-01-552174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kondo T, Imura Y, Chikuma S, Hibino S, Omata-Mise S, Ando M, Akanuma T, Iizuka M, Sakai R, Morita R, Yoshimura A (2018) Generation and application of human induced-stem cell memory T cells for adoptive immunotherapy. Cancer Sci 109(7):2130–2140. https://doi.org/10.1111/cas.13648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoffmann J-M, Schubert M-L, Wang L, Hückelhoven A, Sellner L, Stock S, Schmitt A, Kleist C, Gern U, Loskog A (2018) Differences in expansion potential of naive chimeric antigen receptor T cells from healthy donors and untreated chronic lymphocytic leukemia Patients. Front Immunol 8:1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stock S, Hoffmann J-M, Schubert M-L, Wang L, Wang S, Gong W, Neuber B, Gern U, Schmitt A, Müller-Tidow C (2018) Influence of retronectin-mediated T-cell activation on expansion and phenotype of CD19-specific chimeric antigen receptor T cells. Hum Gene Ther 29(10):1167–1182

    Article  CAS  PubMed  Google Scholar 

  29. Stock S, Ubelhart R, Schubert ML, Fan F, He B, Hoffmann JM, Wang L, Wang S, Gong W, Neuber B, Huckelhoven-Krauss A, Gern U, Christ C, Hexel M, Schmitt A, Schmidt P, Krauss J, Jager D, Muller-Tidow C, Dreger P, Schmitt M, Sellner L (2019) Idelalisib for optimized CD19-specific chimeric antigen receptor T cells in chronic lymphocytic leukemia patients. Int J Cancer. https://doi.org/10.1002/ijc.32201

    Article  PubMed  Google Scholar 

  30. Kaartinen T, Luostarinen A, Maliniemi P, Keto J, Arvas M, Belt H, Koponen J, Loskog A, Mustjoki S, Porkka K (2017) Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion. Cytotherapy 19(6):689–702

    Article  CAS  PubMed  Google Scholar 

  31. Mercier-Letondal P, Montcuquet N, Sauce D, Certoux JM, Jeanningros S, Ferrand C, Bonyhadi M, Tiberghien P, Robinet E (2008) Alloreactivity of ex vivo-expanded T cells is correlated with expansion and CD4/CD8 ratio. Cytotherapy 10(3):275–288. https://doi.org/10.1080/14653240801927032

    Article  CAS  PubMed  Google Scholar 

  32. Gargett T, Brown MP (2015) Different cytokine and stimulation conditions influence the expansion and immune phenotype of third-generation chimeric antigen receptor T cells specific for tumor antigen GD2. Cytotherapy 17(4):487–495

    Article  CAS  PubMed  Google Scholar 

  33. Yu S, Nukaya I, Enoki T, Chatani E, Kato A, Goto Y, Dan K, Sasaki M, Tomita K, Tanabe M (2008) In vivo persistence of genetically modified T cells generated ex vivo using the fibronectin CH296 stimulation method. Cancer Gene Ther 15(8):508–516

    Article  CAS  PubMed  Google Scholar 

  34. Yang S, Ji Y, Gattinoni L, Zhang L, Yu Z, Restifo NP, Rosenberg SA, Morgan RA (2013) Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer Immunol Immunother 62(4):727–736

    Article  CAS  PubMed  Google Scholar 

  35. Yang S, Archer GE, Flores CE, Mitchell DA, Sampson JH (2013) A cytokine cocktail directly modulates the phenotype of DC-enriched anti-tumor T cells to convey potent anti-tumor activities in a murine model. Cancer Immunol Immunother 62(11):1649–1662

    Article  CAS  PubMed  Google Scholar 

  36. Xu XJ, Song DG, Poussin M, Ye Q, Sharma P, Rodríguez-García A, Tang Y-M, Powell DJ (2016) Multiparameter comparative analysis reveals differential impacts of various cytokines on CART cell phenotype and function ex vivo and in vivo. Oncotarget 7(50):82354–82368

    PubMed  PubMed Central  Google Scholar 

  37. Kayser S, Bobeta C, Feucht J, Witte KE, Scheu A, Bulow HJ, Joachim S, Stevanovic S, Schumm M, Rittig SM, Lang P, Rocken M, Handgretinger R, Feuchtinger T (2015) Rapid generation of NY-ESO-1-specific CD4(+) THELPER1 cells for adoptive T-cell therapy. Oncoimmunology 4(5):e1002723. https://doi.org/10.1080/2162402x.2014.1002723

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194. https://doi.org/10.1084/jem.20100643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207(10):2175–2186. https://doi.org/10.1084/jem.20100637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang ZZ, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ, Witzig TE, Ansell SM (2012) IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest 122(4):1271–1282. https://doi.org/10.1172/jci59806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, Murphy WJ, Azuma M, Anderson AC, Kuchroo VK, Blazar BR (2011) Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117(17):4501–4510. https://doi.org/10.1182/blood-2010-10-310425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mikucki ME, Skitzki JJ, Frelinger JG, Odunsi K, Gajewski TF, Luster AD, Evans SS (2016) Unlocking tumor vascular barriers with CXCR42: implications for cancer immunotherapy. Oncoimmunology 5(5):e1116675. https://doi.org/10.1080/2162402x.2015.1116675

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mikucki ME, Fisher DT, Matsuzaki J, Skitzki JJ, Gaulin NB, Muhitch JB, Ku AW, Frelinger JG, Odunsi K, Gajewski TF, Luster AD, Evans SS (2015) Non-redundant requirement for CXCR43 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun 6:7458. https://doi.org/10.1038/ncomms8458

    Article  CAS  PubMed  Google Scholar 

  44. Chheda ZS, Sharma RK, Jala VR, Luster AD, Haribabu B (2016) Chemoattractant receptors BLT1 and CXCR44 regulate antitumor immunity by facilitating CD8+ T cell migration into tumors. J Immunol 197(5):2016–2026. https://doi.org/10.4049/jimmunol.1502376

    Article  CAS  PubMed  Google Scholar 

  45. Schuster K, Gadiot J, Andreesen R, Mackensen A, Gajewski TF, Blank C (2009) Homeostatic proliferation of naive CD8+ T cells depends on CD62L/L-selectin-mediated homing to peripheral LN. Eur J Immunol 39(11):2981–2990. https://doi.org/10.1002/eji.200939330

    Article  CAS  PubMed  Google Scholar 

  46. Gattinoni L, Klebanoff CA, Restifo NP (2012) Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 12(10):671–684. https://doi.org/10.1038/nrc3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Farber DL, Yudanin NA, Restifo NP (2014) Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol 14(1):24–35. https://doi.org/10.1038/nri3567

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded in part by the Government of Baden-Württemberg (Anschubfinanzierung zur Etablierung eines Netzwerks “Brückeninstitutionen für die Regenerative Medizin in Baden-Württemberg”, Kapitel 1403 Tit.Gr. 74), by the DKTK (Deutsches Konsortium für Translationale Krebsforschung) and by the NCT-HD-CAR-1 Grant from the German Cancer Research Center (DKFZ). Leopold Sellner was supported by the “Physician Scientist-Programm” of the Medical Faculty of Heidelberg, the NCT Heidelberg School of Oncology (HSO) and the “Clinician Scientist Programm” of the German Society of Internal Medicine (DGIM).

Author information

Authors and Affiliations

Authors

Contributions

WG and LS designed the study; WG, JMH and YL performed experiments; WG and LS analyzed the data and wrote the manuscript; MS edited the manuscript; MS, LW, MLS, WG, SS, BN, AHK, UG and AS discussed the experimental design; CMT and HS read the manuscript and gave comments; HS provided essential materials; all authors reviewed the manuscript.

Corresponding author

Correspondence to Leopold Sellner.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval and ethical standards

The research was approved by the Ethics Committee of the University of Heidelberg (S-254/2016). All studies involving human participants were performed in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent for the use of their blood for research purposes was obtained from all healthy donors by the Blood Bank Heidelberg.

Cell line authentication

The soft-tissue sarcoma cell lines SW982 (HLA-A2-positive NY-ESO-1-positive), SYO-1 (HLA-A2-negative NY-ESO-1-negative), Fuji (HLA-A2-positive NY-ESO-1-negative) and MLS-1765-92 (HLA-A2-negative NY-ESO-1-positive) were provided by Prof. H. Shiku (Mie University, Tsu, Japan). All cell lines were authenticated at DSMZ (German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, W., Hoffmann, JM., Stock, S. et al. Comparison of IL-2 vs IL-7/IL-15 for the generation of NY-ESO-1-specific T cells. Cancer Immunol Immunother 68, 1195–1209 (2019). https://doi.org/10.1007/s00262-019-02354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02354-4

Keywords

Navigation