Skip to main content

Advertisement

Log in

Tumor genetic alterations and features of the immune microenvironment drive myelodysplastic syndrome escape and progression

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The transformation and progression of myelodysplastic syndromes (MDS) to secondary acute myeloid leukemia (sAML) involve genetic, epigenetic, and microenvironmental factors. Driver mutations have emerged as valuable markers for defining risk groups and as candidates for targeted treatment approaches in MDS. It is also evident that the risk of transformation to sAML is increased by evasion of adaptive immune surveillance. This study was designed to explore the immune microenvironment, immunogenic tumor-intrinsic mechanisms (HLA and PD-L1 expression), and tumor genetic features (somatic mutations and altered karyotypes) in MDS patients and to determine their influence on the progression of the disease. We detected major alterations of the immune microenvironment in MDS patients, with a reduced count of CD4+ T cells, a more frequent presence of markers related to T cell exhaustion, a more frequent presence of myeloid-derived suppressor cells (MDSCs), and changes in the functional phenotype of NK cells. HLA Class I (HLA-I) expression was normally expressed in CD34+ blasts and during myeloid differentiation. Only two out of thirty-six patients with homozygosity for HLA-C groups acquired complete copy-neutral loss of heterozygosity in the HLA region. PD-L1 expression on the leukemic clone was also increased in MDS patients. Finally, no interplay was observed between the anti-tumor immune microenvironment and mutational genomic features. In summary, extrinsic and intrinsic immunological factors might severely impair immune surveillance and contribute to clonal immune escape. Genomic alterations appear to make an independent contribution to the clonal evolution and progression of MDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HLA-I:

HLA Class I

HMR:

High molecular risk

IPSS:

International prognostic scoring system

IPSS-R:

International prognostic scoring system revised

LOH HLA:

Loss of heterozygosity in the HLA region

LOH:

Loss of heterozygosity

MDS del(5q):

MDS with isolated del(5q)

MDS EB:

MDS with excess blasts

MDS:

Myelodysplastic syndromes

MDSCs:

Myeloid derived suppressor cells

MDS-MLD:

MDS with multilineage dysplasia

MDS-RS:

MLD and ring sideroblasts

MDS-SLD:

MDS with single lineage dysplasia

MoAbs:

Monoclonal antibodies

NGS:

Next-generation sequencing

PB:

Peripheral blood

sAML:

Secondary acute myeloid leukemia

References

  1. Germing U, Kobbe G, Haas R, Gattermann N (2013) Myelodysplastic syndromes: diagnosis, prognosis, and treatment. Dtsch Arztebl Int 110:783–790. https://doi.org/10.3238/arztebl.2013.0783

    Article  PubMed  PubMed Central  Google Scholar 

  2. Neukirchen J, Schoonen WM, Strupp C, Gattermann N, Aul C, Haas R, Germing U (2011) Incidence and prevalence of myelodysplastic syndromes: data from the Düsseldorf MDS-registry. Leuk Res 35:1591–1596. https://doi.org/10.1016/j.leukres.2011.06.001

    Article  PubMed  Google Scholar 

  3. Bennett JM (2016) Changes in the updated 2016: WHO Classification of the myelodysplastic syndromes and related myeloid neoplasms. Clin Lymphoma Myeloma Leuk 16:607–609. https://doi.org/10.1016/j.clml.2016.08.005

    Article  PubMed  Google Scholar 

  4. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Oscier D, Ohyashiki K, Toyama K, Aul C, Mufti G, Bennett J (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088

    Article  CAS  Google Scholar 

  5. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, Kantarjian H, Kuendgen A, Levis A, Malcovati L, Cazzola M, Cermak J, Fonatsch C, Le Beau MM, Slovak ML, Krieger O, Luebbert M, Maciejewski J, Magalhaes SM, Miyazaki Y, Pfeilstöcker M, Sekeres M, Sperr WR, Stauder R, Tauro S, Valent P, Vallespi T, van de Loosdrecht AA, Germing U, Haase D (2012) Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120:2454–2465. https://doi.org/10.1182/blood-2012-03-420489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wall M (2017) Recurrent cytogenetic abnormalities in myelodysplastic syndromes. Methods Mol Biol 1541:209–222

    Article  CAS  Google Scholar 

  7. Pellagatti A, Boultwood J (2015) The molecular pathogenesis of the myelodysplastic syndromes. Eur J Haematol 95:3–15. https://doi.org/10.1111/ejh.12515

    Article  CAS  PubMed  Google Scholar 

  8. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, Yoon CJ, Ellis P, Wedge DC, Pellagatti A, Shlien A, Groves MJ, Forbes SA, Raine K, Hinton J, Mudie LJ, McLaren S, Hardy C, Latimer C, Della Porta MG, O’Meara S, Ambaglio I, Galli A, Butler AP, Walldin G, Teague JW, Quek L, Sternberg A, Gambacorti-Passerini C, Cross NC, Green AR, Boultwood J, Vyas P, Hellstrom-Lindberg E, Bowen D, Cazzola M, Stratton MR, Campbell PJ (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122:3616–3627. https://doi.org/10.1182/blood-2013-08-518886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bejar R, Steensma DP (2014) Recent developments in myelodysplastic syndromes. Blood 124:2793–2803. https://doi.org/10.1182/blood-2014-04-522136

    Article  CAS  PubMed  Google Scholar 

  10. Wang C, Yang Y, Gao S, Chen J, Yu J, Zhang H, Li M, Zhan X, Li W (2018) Immune dysregulation in myelodysplastic syndrome: clinical features, pathogenesis and therapeutic strategies. Crit Rev Oncol Hematol 122:123–132. https://doi.org/10.1016/j.critrevonc.2017.12.013

    Article  PubMed  Google Scholar 

  11. Ivy KS, Brent Ferrell P Jr (2018) Disordered immune regulation and its therapeutic targeting in myelodysplastic syndromes. Curr Hematol Malig Rep 13:244–255. https://doi.org/10.1007/s11899-018-0463-9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wolach O, Stone R (2016) Autoimmunity and inflammation in myelodysplastic syndromes. Acta Haematol 136:108–117. https://doi.org/10.1159/000446062

    Article  CAS  PubMed  Google Scholar 

  13. Kook H, Zeng W, Guibin C, Kirby M, Young NS, Maciejewski JP (2001) Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia. Exp Hematol 29:1270–1277

    Article  CAS  Google Scholar 

  14. Bouchliou I, Miltiades P, Nakou E, Spanoudakis E, Goutzouvelidis A, Vakalopoulou S, Garypidou V, Kotoula V, Bourikas G, Tsatalas C, Kotsianidis I (2011) Th17 and Foxp3(+) T regulatory cell dynamics and distribution in myelodysplastic syndromes. Clin Immunol 139:350–359. https://doi.org/10.1016/j.clim.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  15. Aggarwal S, van de Loosdrecht AA, Alhan C, Ossenkoppele GJ, Westers TM, Bontkes HJ (2011) Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy. Br J Haematol 153:568–581. https://doi.org/10.1111/j.1365-2141.2011.08683x

    Article  CAS  PubMed  Google Scholar 

  16. Epling-Burnette PK, Bai F, Painter JS, Rollison DE, Salih HR, Krusch M, Zou J, Ku E, Zhong B, Boulware D, Moscinski L, Wei S, Djeu JY, List AF (2007) Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 109:4816–4824

    Article  CAS  Google Scholar 

  17. Yu H, Boyle TA, Zhou C, Rimm DL, Hirsch FR (2016) PD-L1 expression in lung cancer. J Thorac Oncol 11:964–975. https://doi.org/10.1016/j.jtho.2016.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jelinek T, Mihalyova J, Kascak M, Duras J, Hajek R (2017) PD-1/PD-L1 inhibitors in haematological malignancies: update 2017. Immunology 152:357–371. https://doi.org/10.1111/imm.12788Epub 2017 Aug 4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Montes P, Kerick M, Bernal M, Hernández F, Jiménez P, Garrido P, Márquez A, Jurado M, Martin J, Garrido F, Ruiz-Cabello F (2018) Genomic loss of HLA alleles may affect the clinical outcome in low-risk myelodysplastic syndrome patients. Oncotarget 9:36929–36944. https://doi.org/10.18632/oncotarget.26405

    Article  PubMed  PubMed Central  Google Scholar 

  20. Del Mar Valenzuela-Membrives M, Perea-García F, Sanchez-Palencia A, Ruiz-Cabello F, Gómez-Morales M, Miranda-León MT, Galindo-Angel I, Fárez-Vidal ME (2016) Progressive changes in composition of lymphocytes in lung tissues from patients with non-small-cell lung cancer. Oncotarget 7:71608–71619. https://doi.org/10.18632/oncotarget.12264

    Article  Google Scholar 

  21. Kittang AO, Kordasti S, Sand KE, Costantini B, Kramer AM, Perezabellan P, Seidl T, Rye KP, Hagen KM, Kulasekararaj A, Bruserud Ø, Mufti GJ (2015) Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology 5:e1062208

    Article  Google Scholar 

  22. Garrido F, Ruiz-Cabello F, Cabrera T, Pérez-Villar JJ, López-Botet M, Duggan-Keen M, Stern PL (1997) Implications for immunosurveillance of altered HLA Class I phenotypes in human tumours. Immunol Today 18:89–95

    Article  CAS  Google Scholar 

  23. Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA Class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12:3–13. https://doi.org/10.1006/scbi.2001.0404

    Article  CAS  PubMed  Google Scholar 

  24. Glenthøj A, Ørskov AD, Hansen JW, Hadrup SR, O’Connell C, Grønbæk K (2016) Immune mechanisms in myelodysplastic syndrome. Int J Mol Sci. https://doi.org/10.3390/ijms17060944

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yu S, Liu C, Zhang L, Shan B, Tian T, Hu Y, Shao L, Sun Y, Ji C, Ma D (2014) Elevated Th22 cells correlated with Th17 cells in peripheral blood of patients with acute myeloid leukemia. Int J Mol Sci 15:1927–1945. https://doi.org/10.3390/ijms15021927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian T, Sun Y, Li M, He N, Yuan C, Yu S, Wang M, Ji C, Ma D (2013) Increased Th22 cells as well as Th17 cells in patients with adult T-cell acute lymphoblastic leukemia. Clin Chim Acta 426:108–113. https://doi.org/10.1016/j.cca.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  27. Canale FP, Ramello MC, Núñez N, Araujo Furlan CL, Bossio SN, Gorosito Serrán M, Tosello Boari J, Del Castillo A, Ledesma M, Sedlik C, Piaggio E, Gruppi A, Acosta Rodríguez EA, Montes CL (2018) CD39 expression defines cell exhaustion in tumor-infiltrating CD8(+) T cells. Cancer Res 78:115–128. https://doi.org/10.1158/0008-5472.can-16-2684

    Article  CAS  PubMed  Google Scholar 

  28. Perry C, Hazan-Halevy I, Kay S, Cipok M, Grisaru D, Deutsch V, Polliack A, Naparstek E, Herishanu Y (2012) Increased CD39 expression on CD4(+) T lymphocytes has clinical and prognostic significance in chronic lymphocytic leukemia. Ann Hematol 91:1271–1279. https://doi.org/10.1007/s00277-012-1425-2

    Article  CAS  PubMed  Google Scholar 

  29. Cichocki F, Schlums H, Theorell J, Tesi B, Miller JS, Ljunggren HG, Bryceson YT (2016) Diversification and functional specialization of human NK cell subsets. Curr Top Microbiol 395:63–93

    CAS  Google Scholar 

  30. Costello RT, Fauriat C, Sivori S, Marcenaro E, Olive D (2004) NK cells: innate immunity against hematological malignancies? Trends Immunol 25:328–333

    Article  CAS  Google Scholar 

  31. Pietra G, Vitale M, Moretta L, Mingari MC (2012) How melanoma cells inactivate NK cells. Oncoimmunology 1:974–975

    Article  Google Scholar 

  32. Liu J, Zhou Y, Huang Q, Qiu L (2014) CD14(+) HLA-DR (low/−) expression: a novel prognostic factor in chronic lymphocytic leukemia. Oncol Lett 9:1167–1172

    Article  Google Scholar 

  33. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, Fang Z, Nguyen M, Pierce S, Wei Y, Parmar S, Cortes J, Kantarjian H, Garcia-Manero G (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28:1280–1288. https://doi.org/10.1038/leu.2013.355

    Article  CAS  PubMed  Google Scholar 

  34. Perea F, Bernal M, Sánchez-Palencia A, Carretero J, Torres C, Bayarri C, Gómez-Morales M, Garrido F, Ruiz-Cabello F (2017) The absence of HLA Class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int J Cancer 140:888–899. https://doi.org/10.1002/ijc.30489

    Article  CAS  PubMed  Google Scholar 

  35. McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, Birkbak NJ, Veeriah S, Van Loo P, Herrero J, Swanton C (2017) Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171:1259–1271. https://doi.org/10.1016/j.cell.2017.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, Real LM, Garrido F, Cabrera T (2008) Analysis of HLA Class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 60:439–447. https://doi.org/10.1007/s00251-008-0303-5

    Article  CAS  PubMed  Google Scholar 

  37. Brouwer RE, van der Heiden P, Schreuder GM, Mulder A, Datema G, Anholts JD, Willemze R, Claas FH, Falkenburg JH (2002) Loss or downregulation of HLA Class I expression at the allelic level in acute leukemia is infrequent but functionally relevant and can be restored by interferon. Hum Immunol 63:200–210

    Article  CAS  Google Scholar 

  38. Wetzler M, Baer MR, Stewart SJ, Donohue K, Ford L, Stewart CC, Repasky EA, Ferrone S (2001) HLA Class I antigen cell surface expression is preserved on acute myeloid leukemia blasts at diagnosis and at relapse. Leukemia 15:128–133

    Article  CAS  Google Scholar 

  39. Abushok DV, Duke JL, Xie HM, Stanley N, Atienza J, Perdigones N, Nicholas P, Ferriola D, Li Y, Huang H, Ye W, Morrissette JJD, Kearns J, Porter DL, Podsakoff GM, Eisenlohr LC, Biegel JA, Chou ST, Monos DS, Bessler M, Olson TS (2017) Somatic HLA mutations expose the role of class I-mediated autoimmunity in aplastic anemia and its clonal complications. Blood Adv 1:1900–1910

    Article  Google Scholar 

  40. Jordanova ES, Riemersma SA, Philippo K, Schuuring E, Kluin PM (2003) Beta2-microglobulin aberrations in diffuse large B-cell lymphoma of the testis and the central nervous system. Int J Cancer 103:393–398

    Article  CAS  Google Scholar 

  41. Perea F, Sánchez-Palencia A, Gómez-Morales M, Bernal M, Concha Á, García MM, González-Ramírez AR, Kerick M, Martin J, Garrido F, Ruiz-Cabello F, Aptsiauri N (2017) HLA class I loss and PD-L1 expression in lung cancer: impact on T-cell infiltration and immune escape. Oncotarget 9:4120–4133. https://doi.org/10.18632/oncotarget.23469

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K, Henry JY, Ghorani E, Wilson GA, Birkbak NJ, Jamal-Hanjani M, Veeriah S, Szallasi Z, Loi S, Hellmann MD, Feber A, Chain B, Herrero J, Quezada SA, Demeulemeester J, Van Loo P, Beck S, McGranahan N, Swanton C (2019) Neoantigen-directed immune escape in lung cancer evolution. Nature 567:479–485. https://doi.org/10.1038/s41586-019-1032-7

    Article  CAS  PubMed  Google Scholar 

  43. Jordanova ES, Riemersma SA, Philippo K, Giphart-Gassler M, Schuuring E, Kluin PM (2002) Hemizygous deletions in the HLA region account for loss of heterozygosity in the majority of diffuse large B-cell lymphomas of the testis and the central nervous system. Genes Chromosom Cancer 35:38–48

    Article  CAS  Google Scholar 

  44. Sebastián E, Alcoceba M, Martín-García D, Blanco Ó, Sanchez-Barba M, Balanzategui A, Marín L, Montes-Moreno S, González-Barca E, Pardal E, Jiménez C, García-Álvarez M, Clot G, Carracedo Á, Gutiérrez NC, Sarasquete ME, Chillón C, Corral R, Prieto-Conde MI, Caballero MD, Salaverria I, García-Sanz R, González M (2016) High-resolution copy number analysis of paired normal-tumor samples from diffuse large B cell lymphoma. Ann Hematol 95:253–262. https://doi.org/10.1007/s00277-015-2552-3

    Article  CAS  PubMed  Google Scholar 

  45. Albertsson PA, Basse PH, Hokland M, Goldfarb RH, Nagelkerke JF, Nannmark U, Kuppen PJ (2003) NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol 24:603–609

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Victoria Calvo and María Corzo for technical assistance.

Funding

This work was supported by Grants from the Instituto de Salud Carlos III co-financed by FEDER funds (European Union) (PI 16/00752, PI 17/00197) and Junta de Andalucía in Spain (Group CTS-143, PI09/0382). This study is part of the doctoral thesis of Paola Montes, whose pre-doctoral fellowship was partially financed by Abbott, Becton–Dickinson, Beckman Coulter, and the Spanish MDS group.

Author information

Authors and Affiliations

Authors

Contributions

PM and LNC contributed to the immunophenotypic analysis of the tumor microenvironment. PM and MB contributed to sequencing and data analysis. FH and PG contributed to the diagnosis and classification of patients based on their clinical and hematological characteristics. ARG-R carried out the statistical analyses. PM, MB, PJ, MJ, FG, and FR-C were involved with all aspects of the study’s design and contributed to the manuscript preparation.

Corresponding author

Correspondence to Francisco Ruiz-Cabello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

The procedures with human samples were performed in accordance with the Declaration of Helsinki and the ethical standards of the Research Ethics Committee of Virgen de las Nieves Hospital in Granada, Spain, which approved the project on June 28 2016 (PEIBA code 0713-N-16 and PROYECTO code 555).

Informed consent

Written informed consent was provided by all patients at the time of their diagnosis and by healthy donors at routine analyses during the first few months of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montes, P., Bernal, M., Campo, L.N. et al. Tumor genetic alterations and features of the immune microenvironment drive myelodysplastic syndrome escape and progression. Cancer Immunol Immunother 68, 2015–2027 (2019). https://doi.org/10.1007/s00262-019-02420-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02420-x

Keywords

Navigation