Skip to main content

Advertisement

Log in

Toward precision immunotherapy using multiplex immunohistochemistry and in silico methods to define the tumor immune microenvironment

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Recent developments in cancer immunotherapy promise better outcomes for cancer patients, although clinical trials for difficult to treat cancers such as malignant brain cancer present special challenges, showing little response to first generation immunotherapies. Reasons for differences in immunotherapy response in some cancer types are likely due to the nature of tumor microenvironment, which harbors multiple cell types which interact with tumor cells to establish immunosuppression. The cell types which appear to hold the key in regulating tumor immunosuppression are the tumor-infiltrating immune cells. The current standard treatment for difficult to treat cancer, including the most malignant brain cancer, glioblastoma, continues to offer a bleak outlook for patients. Immune-profiling and correlation with pathological and clinical data will lead to a deeper understanding of the tumor immune microenvironment and contribute toward the selection, optimization and development of novel precision immunotherapies. Here, we review the current understanding of the tumor microenvironmental landscape in glioblastoma with a focus on next-generation technologies including multiplex immunofluorescence and computational approaches to map the brain tumor microenvironment to decipher the role of the immune system in this lethal malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mlecnik B, Bindea G, Kirilovsky A, Angell HK, Obenauf AC, Tosolini M et al (2016) The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med 8:327ra26

    PubMed  Google Scholar 

  2. Mascaux C, Angelova M, Vasaturo A, Beane J, Hijazi K, Anthoine G et al (2019) Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature 571:570–575

    CAS  PubMed  Google Scholar 

  3. Galon J (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. https://doi.org/10.1126/science.1129139

    Article  PubMed  Google Scholar 

  4. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mlecnik B, Van den Eynde M, Bindea G, Church SE, Vasaturo A, Fredriksen T et al (2018) Comprehensive intrametastatic immune quantification and major impact of immunoscore on survival. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djx123

    Article  PubMed  Google Scholar 

  6. Van den Eynde M, Mlecnik B, Bindea G, Fredriksen T, Church SE, Lafontaine L et al (2018) The link between the multiverse of immune microenvironments in metastases and the survival of colorectal cancer patients. Cancer Cell 34(1012–1026):e3

    Google Scholar 

  7. Yang S, Liu T, Nan H, Wang Y, Chen H, Zhang X et al (2020) Comprehensive analysis of prognostic immune-related genes in the tumor microenvironment of cutaneous melanoma. J Cell Physiol 235:1025–1035

    CAS  PubMed  Google Scholar 

  8. Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G et al (2017) Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol 35:40–47

    CAS  PubMed  Google Scholar 

  9. Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A et al (2020) Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the checkmate 143 phase 3 randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.1024

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gadgeel SM, Stevenson JP, Langer CJ, Gandhi L, Borghaei H, Patnaik A et al (2018) Pembrolizumab and platinum-based chemotherapy as first-line therapy for advanced non-small-cell lung cancer: phase 1 cohorts from the KEYNOTE-021 study. Lung Cancer 125:273–281

    PubMed  Google Scholar 

  11. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Syn NL, Teng MWL, Mok TSK, Soo RA (2017) De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 18:e731–e741

    PubMed  Google Scholar 

  14. De Gramont A, Watson S, Ellis LM, Rodón J, Tabernero J, De Gramont A et al (2015) Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat Rev Clin Oncol 12:197

    PubMed  Google Scholar 

  15. Galon J, Pagès F, Marincola FM, Angell HK, Thurin M, Lugli A et al (2012) Cancer classification using the immunoscore: a worldwide task force. J Transl Med 10:205

    PubMed  PubMed Central  Google Scholar 

  16. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. https://doi.org/10.1002/j.1460-2075.1992.tb05481.x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261

    CAS  PubMed  Google Scholar 

  18. Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A et al (2014) Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 20:5290–5301

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86:343–349

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, López-Janeiro A, Porciuncula A, Idoate MA et al (2019) Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med 25:470–476

    CAS  PubMed  Google Scholar 

  21. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB et al (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25:477–486

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T et al (2018) Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. Neuro Oncol 20:674–686

    CAS  PubMed  Google Scholar 

  23. Davenport AJ, Cross RS, Watson KA, Liao Y, Shi W, Prince HM et al (2018) Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc Natl Acad Sci USA 115:E2068–E2076

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mardiana S, Lai J, House IG, Beavis PA, Darcy PK (2019) Switching on the green light for chimeric antigen receptor T-cell therapy. Clin Transl Immunol 8:e1046

    Google Scholar 

  25. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D et al (2017) HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 3:1094–1101

    PubMed  PubMed Central  Google Scholar 

  26. O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD et al (2017) A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaa0984

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goff SL, Morgan RA, Yang JC, Sherry RM, Robbins PF, Restifo NP et al (2019) Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother 42:126–135

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A et al (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375:2561–2569

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Craver LF (1948) Tolerance to whole body irradiation of patients with advanced cancer. At Energy Biophys Biol Med 1:148

    CAS  PubMed  Google Scholar 

  30. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L et al (2018) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 33:152

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A et al (2008) Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223

    CAS  PubMed  Google Scholar 

  32. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wöhrer A et al (2015) Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 17:1064–1075

    CAS  PubMed  Google Scholar 

  34. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    PubMed  Google Scholar 

  35. DeAngelis LM (2001) Brain tumors. N Engl J Med 344:114–123

    CAS  PubMed  Google Scholar 

  36. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  PubMed  Google Scholar 

  37. Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH et al (2018) Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med 24:1459–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hodges TR, Ott M, Xiu J, Gatalica Z, Swensen J, Zhou S et al (2017) Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro Oncol 19:1047–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S, Samghababi P et al (2017) Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep 21:1399–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Smyth MJ, Ngiow SF, Ribas A, Teng MWL (2016) Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 13:143–158

    CAS  PubMed  Google Scholar 

  42. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin N, Yan W, Gao K, Wang Y, Zhang J, You Y (2014) Prevalence and clinicopathologic characteristics of the molecular subtypes in malignant glioma: a multi-institutional analysis of 941 cases. PLoS One 9:e94871

    PubMed  PubMed Central  Google Scholar 

  44. Teo W-Y, Sekar K, Seshachalam P, Shen J, Chow W-Y, Lau CC et al (2019) Relevance of a TCGA-derived glioblastoma subtype gene-classifier among patient populations. Sci Rep 9:7442

    PubMed  PubMed Central  Google Scholar 

  45. Kaffes I, Szulzewsky F, Chen Z, Herting CJ, Gabanic B, Velázquez Vega JE et al (2019) Human mesenchymal glioblastomas are characterized by an increased immune cell presence compared to proneural and classical tumors. Oncoimmunology 8:e1655360

    PubMed  PubMed Central  Google Scholar 

  46. Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T et al (2019) Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med 25:462–469

    PubMed  PubMed Central  Google Scholar 

  47. House IG, Savas P, Lai J, Chen AXY, Oliver AJ, Teo ZL et al (2020) Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin Cancer Res 26:487–504

    CAS  PubMed  Google Scholar 

  48. Kim J, Lee I-H, Cho HJ, Park C-K, Jung Y-S, Kim Y et al (2015) Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell 28:318–328

    CAS  PubMed  Google Scholar 

  49. van Linde ME, Brahm CG, de Witt Hamer PC, Reijneveld JC, Bruynzeel AME, Vandertop WP et al (2017) Treatment outcome of patients with recurrent glioblastoma multiforme: a retrospective multicenter analysis. J Neurooncol 135:183–192

    PubMed  PubMed Central  Google Scholar 

  50. Verhoeff JJC, Lavini C, van Linde ME, Stalpers LJA, Majoie CBLM, Reijneveld JC et al (2010) Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma. Ann Oncol 21:1723–1727

    CAS  PubMed  Google Scholar 

  51. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722

    CAS  PubMed  Google Scholar 

  52. Bota DA, Chung J, Dandekar M, Carrillo JA, Kong X-T, Fu BD et al (2018) Phase II study of ERC1671 plus bevacizumab versus bevacizumab plus placebo in recurrent glioblastoma: interim results and correlations with CD4+ T-lymphocyte counts. CNS Oncol 7:CNS22. https://doi.org/10.2217/cns-2018-0009

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mohme M, Schliffke S, Maire CL, Rünger A, Glau L, Mende KC et al (2018) Immunophenotyping of newly diagnosed and recurrent glioblastoma defines distinct immune exhaustion profiles in peripheral and tumor-infiltrating lymphocytes. Clin Cancer Res 24:4187–4200

    CAS  PubMed  Google Scholar 

  54. Rahman M, Kresak J, Yang C, Huang J, Hiser W, Kubilis P et al (2018) Analysis of immunobiologic markers in primary and recurrent glioblastoma. J Neurooncol 137:249–257

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32:42–56.e6. https://doi.org/10.1016/j.ccell.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DIS, Zairis S et al (2016) Clonal evolution of glioblastoma under therapy. Nat Genet 48:768–776

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Daniel P, Sabri S, Chaddad A, Meehan B, Jean-Claude B, Rak J et al (2019) Temozolomide induced hypermutation in glioma: evolutionary mechanisms and therapeutic opportunities. Front Oncol 9:41

    PubMed  PubMed Central  Google Scholar 

  59. Grossman SA, Ye X, Lesser G, Sloan A, Carraway H, Desideri S et al (2011) Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res 17:5473–5480

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH et al (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 13:324–333

    CAS  PubMed  Google Scholar 

  61. Rühle PF, Wunderlich R, Deloch L, Fournier C, Maier A, Klein G et al (2017) Modulation of the peripheral immune system after low-dose radon spa therapy: detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity 50:133–140. https://doi.org/10.1080/08916934.2017.1284819

    Article  CAS  PubMed  Google Scholar 

  62. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Investig 124:687–695

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu-Emerson C, Snuderl M, Kirkpatrick ND, Goveia J, Davidson C, Huang Y et al (2013) Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. Neuro Oncol 15:1079–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bakri SJ, Larson TA, Edwards AO (2008) Intraocular inflammation following intravitreal injection of bevacizumab. Graefes Arch Clin Exp Ophthalmol 246:779–781

    CAS  PubMed  Google Scholar 

  65. EL-Hajjar L, Jalaleddine N, Shaito A, Zibara K, Kazan JM, El-Saghir J et al (2019) Bevacizumab induces inflammation in MDA-MB-231 breast cancer cell line and in a mouse model. Cell Signal 53:400–412

    CAS  PubMed  Google Scholar 

  66. Lin H, Wei S, Hurt EM, Green MD, Zhao L, Vatan L et al (2018) Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Investig 128:805–815

    PubMed  PubMed Central  Google Scholar 

  67. Tang H, Liang Y, Anders RA, Taube JM, Qiu X, Mulgaonkar A et al (2018) PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Investig 128:580–588

    PubMed  PubMed Central  Google Scholar 

  68. Hutchinson RA, Adams RA, McArt DG, Salto-Tellez M, Jasani B, Hamilton PW (2015) Epidermal growth factor receptor immunohistochemistry: new opportunities in metastatic colorectal cancer. J Transl Med 13:217

    PubMed  PubMed Central  Google Scholar 

  69. Marcelis L, Antoranz A, Delsupehe A-M, Biesemans P, Ferreiro JF, Debackere K et al (2020) In-depth characterization of the tumor microenvironment in central nervous system lymphoma reveals implications for immune-checkpoint therapy. Cancer Immunol Immunother 69:1751–1766

    CAS  PubMed  Google Scholar 

  70. Stack EC, Wang C, Roman KA, Hoyt CC (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70:46–58

    CAS  PubMed  Google Scholar 

  71. Lazarus J, Maj T, Joshua Smith J, Lanfranca MP, Rao A, D’Angelica MI et al (2018) Spatial and phenotypic immune profiling of metastatic colon cancer. JCI Insight. https://doi.org/10.1172/jci.insight.121932

    Article  PubMed  PubMed Central  Google Scholar 

  72. Halse H, Colebatch AJ, Petrone P, Henderson MA, Mills JK, Snow H et al (2018) Multiplex immunohistochemistry accurately defines the immune context of metastatic melanoma. Sci Rep 8:11158

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gorris MAJ, Halilovic A, Rabold K, van Duffelen A, Wickramasinghe IN, Verweij D et al (2018) Eight-color multiplex immunohistochemistry for simultaneous detection of multiple immune checkpoint molecules within the tumor microenvironment. J Immunol 200:347–354. https://doi.org/10.4049/jimmunol.1701262

    Article  CAS  PubMed  Google Scholar 

  74. Ravi VM, Neidert N, Will P, Joseph K, Maier JP, Kückelhaus J et al (2020) Lineage and spatial mapping of glioblastoma-associated immunity. bioRxiv. https://doi.org/10.1101/2020.06.01.121467

  75. Asp M, Bergenstråhle J, Lundeberg J (2020) Spatially resolved transcriptomes—next generation tools for tissue exploration. BioEssays 42:e1900221

    PubMed  Google Scholar 

  76. Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M et al (2020) Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol 38:333–342

    CAS  PubMed  Google Scholar 

  77. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM et al (2017) Systemic immunity is required for effective cancer immunotherapy. Cell 168(487–502):e15

    Google Scholar 

  78. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H et al (2018) The immune landscape of cancer. Immunity 48(812–830):e14

    Google Scholar 

  79. Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P, Bohl B et al (2018) Natural killer cells control tumor growth by sensing a growth factor. Cell 172(534–548):e19

    Google Scholar 

  80. Klemm F, Maas RR, Bowman RL, Kornete M, Soukup K, Nassiri S et al (2020) Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181(1643–1660):e17

    Google Scholar 

  81. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220

    PubMed  PubMed Central  Google Scholar 

  82. Gusev Y, Bhuvaneshwar K, Madhavan S (2018) Exploration of the immune cell landscape in brain cancer utilizing gene expression and copy number data. bioRxiv. https://doi.org/10.1101/490599

Download references

Funding

We acknowledge the support of the CASS Foundation (Grant no. 28534), The Royal Melbourne Hospital Neuroscience Foundation, and the Brain Foundation, Australia. SW was supported by the Australia Awards Scholarship from the Department of Foreign Affairs and Trade of Australia. PKD was supported by a NHMRC Senior Research Fellowship (APP1136680).

Author information

Authors and Affiliations

Authors

Contributions

SW, RAH and TM conceptualized the review. SW, YF, SM provided data for and prepared the figures. All authors contributed to the writing and editing of the review. All authors approved the final version.

Corresponding author

Correspondence to Theo Mantamadiotis.

Ethics declarations

Conflict of interest

RAH has ongoing research collaborations with Definiens GmbH and Ultivue Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widodo, S.S., Hutchinson, R.A., Fang, Y. et al. Toward precision immunotherapy using multiplex immunohistochemistry and in silico methods to define the tumor immune microenvironment. Cancer Immunol Immunother 70, 1811–1820 (2021). https://doi.org/10.1007/s00262-020-02801-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02801-7

Keywords

Navigation