Skip to main content

Advertisement

Log in

Transcriptome of CD8+ tumor-infiltrating T cells: a link between diabetes and colorectal cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

A Correction to this article was published on 12 March 2021

This article has been updated

Abstract

There is an increased risk of colorectal cancer (CRC) development in patients with non-insulin-dependent type 2 diabetes. CD8+ T cells have been implicated in diabetes and are crucial for anti-tumor immunity. However, transcriptomic profiling for CD8+ T cells from CRC diabetic patients has not been explored. We performed RNA sequencing and compared transcriptomic profiles of CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) in CRC diabetic patients with CRC nondiabetic patients. We found that genes associated with ribogenesis, epigenetic regulations, oxidative phosphorylation and cell cycle arrest were upregulated in CD8+ TILs from diabetic patients, while genes associated with PI3K signaling pathway, cytokine response and response to lipids were downregulated. Among the significantly deregulated 1009 genes, 342 (186 upregulated and 156 downregulated) genes were selected based on their link to diabetes, and their associations with the presence of specific CRC pathological parameters were assessed using GDC TCGA colon database. The 186 upregulated genes were associated with the presence of colon polyps history (P = 0.0007) and lymphatic invasion (P = 0.0025). Moreover, CRC patients with high expression of the 186 genes were more likely to have poorer disease-specific survival (DSS) (Mantel–Cox log-rank P = 0.024) than those with low score. Our data provide novel insights into molecular pathways and biological functions, which could be altered in CD8+ TILs from CRC diabetic versus nondiabetic patients, and reveal candidate genes linked to diabetes, which could predict DSS and pathological parameters associated with CRC progression. However, further investigations using larger patient cohorts and functional studies are required to validate these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability and material

The datasets used and/or analyzed during the current study are available from the corresponding author on request.

Change history

Abbreviations

CD8+ TILs:

CD8+ Tumor-infiltrating lymphocytes

CRC:

Colorectal cancer

DAVID:

Database for annotation, visualization and integrated discovery

DEGs:

Differentially-expressed genes

DSS:

Disease-specific survival

GDC:

Genomic data commons

iDEP:

Integrated differential expression and pathway analysis

RNA-Seq:

RNA Sequencing

T2DM:

Type 2 diabetes mellitus

TCGA:

The cancer genome atlas

References

  1. Meyerhardt JA, Catalano PJ, Haller DG, Mayer RJ, Macdonald JS, Benson AB 3rd, Fuchs CS (2003) Impact of diabetes mellitus on outcomes in patients with colon cancer. J Clin Oncol 21(3):433–440. https://doi.org/10.1200/jco.2003.07.125

    Article  PubMed  Google Scholar 

  2. Sehgal R, Berg A, Figueroa R, Poritz LS, McKenna KJ, Stewart DB, Koltun WA (2011) Risk factors for surgical site infections after colorectal resection in diabetic patients. J Am Coll Surg 212(1):29–34. https://doi.org/10.1016/j.jamcollsurg.2010.09.011

    Article  PubMed  Google Scholar 

  3. Yang IP, Tsai HL, Huang CW, Lu CY, Miao ZF, Chang SF, Juo SH, Wang JY (2016) High blood sugar levels significantly impact the prognosis of colorectal cancer patients through down-regulation of microRNA-16 by targeting Myb and VEGFR2. Oncotarget 7(14):18837–18850. https://doi.org/10.18632/oncotarget.7719

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ogino S, Fuchs CS, Giovannucci E (2012) How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. Exp Rev Mol Diagn 12(6):621–628. https://doi.org/10.1586/erm.12.46

    Article  CAS  Google Scholar 

  5. de Candia P, Prattichizzo F, Garavelli S, De Rosa V, Galgani M, Di Rella F, Spagnuolo MI, Colamatteo A, Fusco C, Micillo T, Bruzzaniti S, Ceriello A, Puca AA, Matarese G (2019) Type 2 diabetes: how much of an autoimmune disease? Front Endocrinol. https://doi.org/10.3389/fendo.2019.00451

    Article  Google Scholar 

  6. Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS, Lei H, Luk CT, Shi SY, Surendra A, Copeland JK, Ahn J, Prescott D, Rasmussen BA, Chng MH, Engleman EG, Girardin SE, Lam TK, Croitoru K, Dunn S, Philpott DJ, Guttman DS, Woo M, Winer S, Winer DA (2015) Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 21(4):527–542. https://doi.org/10.1016/j.cmet.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  7. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki T, Nagai R (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15(8):914–920. https://doi.org/10.1038/nm.1964

    Article  CAS  PubMed  Google Scholar 

  8. Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P, Barth TF, Dragun D, Skurk T, Hauner H, Blüher M, Unger T, Wolf AM, Knippschild U, Hombach V, Marx N (2008) T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 28(7):1304–1310. https://doi.org/10.1161/atvbaha.108.165100

    Article  CAS  PubMed  Google Scholar 

  9. Miya A, Nakamura A, Miyoshi H, Takano Y, Sunagoya K, Hayasaka K, Shimizu C, Terauchi Y, Atsumi T (2018) Impact of glucose loading on variations in CD4(+) and CD8(+) T Cells in Japanese participants with or without Type 2 diabetes. Front Endocrinol (Lausanne) 9:81. https://doi.org/10.3389/fendo.2018.00081

    Article  PubMed Central  Google Scholar 

  10. Francisco CO, Catai AM, Moura-Tonello SC, Arruda LC, Lopes SL, Benze BG, Del Vale AM, Malmegrim KC, Leal AM (2016) Cytokine profile and lymphocyte subsets in type 2 diabetes. Brazilian J Med Biol Res 49(4):e5062. https://doi.org/10.1590/1414-431x20155062

    Article  CAS  Google Scholar 

  11. Tu TH, Kim CS, Kang JH, Nam-Goong IS, Nam CW, Kim ES, Kim YI, Choi JI, Kawada T, Goto T, Park T, Yoon Park JH, Choi MS (2005) Yu R (2014) Levels of 4–1BB transcripts and soluble 4–1BB protein are elevated in the adipose tissue of human obese subjects and are associated with inflammatory and metabolic parameters. Int J Obes 38(8):1075–1082. https://doi.org/10.1038/ijo.2013.222

    Article  CAS  Google Scholar 

  12. Kim CS, Kim JG, Lee BJ, Choi MS, Choi HS, Kawada T, Lee KU, Yu R (2011) Deficiency for costimulatory receptor 4–1BB protects against obesity-induced inflammation and metabolic disorders. Diabetes 60(12):3159–3168. https://doi.org/10.2337/db10-1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tu TH, Kim CS, Goto T, Kawada T, Kim BS, Yu R (2012) 4–1BB/4-1BBL interaction promotes obesity-induced adipose inflammation by triggering bidirectional inflammatory signaling in adipocytes/macrophages. Mediators Inflamm 2012:972629. https://doi.org/10.1155/2012/972629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H (2015) Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci 112(6):1809–1814. https://doi.org/10.1073/pnas.1417636112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar NP, Sridhar R, Nair D, Banurekha VV, Nutman TB, Babu S (2015) Type 2 diabetes mellitus is associated with altered CD8(+) T and natural killer cell function in pulmonary tuberculosis. Immunology 144(4):677–686. https://doi.org/10.1111/imm.12421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ostroumov D, Fekete-Drimusz N, Saborowski M, Kuhnel F, Woller N (2018) CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 75(4):689–713. https://doi.org/10.1007/s00018-017-2686-7

    Article  CAS  PubMed  Google Scholar 

  17. Sasidharan Nair V, Saleh R, Toor SM, Taha RZ, Ahmed AA, Kurer MA, Murshed K, Alajez NM, Abu Nada M, Elkord E (2020) Transcriptomic profiling disclosed the role of DNA methylation and histone modifications in tumor-infiltrating myeloid-derived suppressor cell subsets in colorectal cancer. Clin Epigenet 12(1):1–15. https://doi.org/10.1186/s13148-020-0808-9

    Article  CAS  Google Scholar 

  18. Saleh R, Toor SM, Taha RZ, Al-Ali D, Sasidharan Nair V (2020) Elkord E (2020) DNA methylation in the promoters of PD-L1, MMP9, ARG1, galectin-9, TIM-3, VISTA and TGF-beta genes in HLA-DR(-) myeloid cells, compared with HLA-DR(+) antigen-presenting cells. Epigenetics. https://doi.org/10.1080/15592294.2020.1767373

    Article  PubMed  PubMed Central  Google Scholar 

  19. Malone BM, Tan F, Bridges SM, Peng Z (2011) Comparison of four ChIP-Seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data. PLoS ONE 6(9):e25260. https://doi.org/10.1371/journal.pone.0025260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, Ma’ayan A (2016) The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Datab: J Biol Datab Cur. https://doi.org/10.1093/database/baw100

    Article  Google Scholar 

  21. Tan TCJ, Knight J, Sbarrato T, Dudek K, Willis AE, Zamoyska R (2017) Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells. Proc Natl Acad Sci 114(30):E6117–E6126. https://doi.org/10.1073/pnas.1700939114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, Karoly ED, Freeman GJ, Petkova V, Seth P, Li L, Boussiotis VA (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692. https://doi.org/10.1038/ncomms7692

    Article  CAS  PubMed  Google Scholar 

  23. Lanitis E, Dangaj D, Irving M, Coukos G (2017) Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann Oncol. https://doi.org/10.1093/annonc/mdx238

    Article  PubMed  Google Scholar 

  24. Bonnington SN, Rutter MD (2016) Surveillance of colonic polyps: Are we getting it right? World J Gastroenterol 22(6):1925–1934. https://doi.org/10.3748/wjg.v22.i6.1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan H, Dong Q, Zheng B, Hu X, Xu JB, Tu S (2017) Lymphovascular invasion is a high risk factor for stage I/II colorectal cancer: a systematic review and meta-analysis. Oncotarget 8(28):46565–46579. https://doi.org/10.18632/oncotarget.15425

    Article  PubMed  PubMed Central  Google Scholar 

  26. Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, Mather KJ, Powers AC, Rhodes CJ, Sussel L, Weir GC (2014) beta-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. J Clin Endocrinol Metab 99(6):1983–1992. https://doi.org/10.1210/jc.2014-1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS (2018) Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res : An Offl J Am Assoc Cancer Res 24(11):2482–2490. https://doi.org/10.1158/1078-0432.ccr-17-3070

    Article  CAS  Google Scholar 

  28. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153(6):1239–1251. https://doi.org/10.1016/j.cell.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, Tonc E, Schreiber RD, Pearce EJ, Pearce EL (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6):1229–1241. https://doi.org/10.1016/j.cell.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mariappan MM, D’Silva K, Lee MJ, Sataranatarajan K, Barnes JL, Choudhury GG, Kasinath BS (2011) Ribosomal biogenesis induction by high glucose requires activation of upstream binding factor in kidney glomerular epithelial cells. Am J Physiol Renal Physiol 300(1):F219-230. https://doi.org/10.1152/ajprenal.00207.2010

    Article  CAS  PubMed  Google Scholar 

  31. Penzo M, Montanaro L, Treré D, Derenzini M (2019) The ribosome biogenesis-cancer connection. Cells. https://doi.org/10.3390/cells8010055

    Article  PubMed  PubMed Central  Google Scholar 

  32. Saleh R, Elkord E (2020) Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Semin Cancer Biol 65:13–27. https://doi.org/10.1016/j.semcancer.2019.07.017

    Article  CAS  PubMed  Google Scholar 

  33. Saleh R, Elkord E (2020) FoxP3(+) T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett 490:174–185. https://doi.org/10.1016/j.canlet.2020.07.022

    Article  CAS  PubMed  Google Scholar 

  34. He W, Zheng C, Wang Y, Dan J, Zhu M, Wei M, Wang J, Wang Z (2019) Prognosis of synchronous colorectal carcinoma compared to solitary colorectal carcinoma: a matched pair analysis. Eur J Gastroenterol Hepatol 31(12):1489–1495. https://doi.org/10.1097/MEG.0000000000001487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fryk E, Strindberg L, Lundqvist A, Sandstedt M, Bergfeldt L, Mattsson Hultén L, Bergström G, Jansson P-A (2019) Galectin-1 is inversely associated with type 2 diabetes independently of obesity—a SCAPIS pilot study. Metabolism Open 4:100017. https://doi.org/10.1016/j.metop.2019.100017

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sanjuán X, Fernández PL, Castells A, Castronovo V, van den Brule F, Liu FT, Cardesa A, Campo E (1997) Differential expression of galectin 3 and galectin 1 in colorectal cancer progression. Gastroenterology 113(6):1906–1915. https://doi.org/10.1016/s0016-5085(97)70010-6

    Article  PubMed  Google Scholar 

  37. Banh A, Zhang J, Cao H, Bouley DM, Kwok S, Kong C, Giaccia AJ, Koong AC, Le QT (2011) Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis. Can Res 71(13):4423–4431. https://doi.org/10.1158/0008-5472.can-10-4157

    Article  CAS  Google Scholar 

  38. Seko A, Kataoka F, Aoki D, Sakamoto M, Nakamura T, Hatae M, Yonezawa S, Yamashita K (2009) Beta 1,3-galactosyltransferases-4/5 are novel tumor markers for gynecological cancers. Tumour Biol : J Int Soc Oncodevelop Biol Med 30(1):43–50. https://doi.org/10.1159/000203129

    Article  CAS  Google Scholar 

  39. Sasaki N, Itakura Y, Toyoda M (2015) Ganglioside GM1 contributes to the state of insulin resistance in senescent human arterial endothelial cells. J Biol Chem 290(42):25475–25486. https://doi.org/10.1074/jbc.M115.684274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang T, Wang F, Wu JY, Qiu ZC, Wang Y, Liu F, Ge XS, Qi XW, Mao Y, Hua D (2018) Clinical correlation of B7–H3 and B3GALT4 with the prognosis of colorectal cancer. World J Gastroenterol 24(31):3538–3546. https://doi.org/10.3748/wjg.v24.i31.3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Romagosa C, Simonetti S, López-Vicente L, Mazo A, Lleonart ME, Castellvi J, Ramon y Cajal S (2011) p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30(18):2087–2097. https://doi.org/10.1038/onc.2010.614

    Article  CAS  PubMed  Google Scholar 

  42. Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R, Niedobitek G, Brabletz T, Kirchner T (2001) The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am J Pathol 159(5):1613–1617. https://doi.org/10.1016/s0002-9440(10)63007-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. VinuÉ Á, MartÍnez-HervÁs S, Herrero-Cervera A, SÁnchez-GarcÍa V, AndrÉs-Blasco I, Piqueras L, Sanz MJ, Real JT, Ascaso JF, Burks DJ, GonzÁlez-Navarro H, (2019) Changes in CDKN2A/2B expression associate with T-cell phenotype modulation in atherosclerosis and type 2 diabetes mellitus. Transl Res 203:31–48. https://doi.org/10.1016/j.trsl.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  44. Brenner E, Schörg BF, Ahmetlić F, Wieder T, Hilke FJ, Simon N, Schroeder C, Demidov G, Riedel T, Fehrenbacher B, Schaller M, Forschner A, Eigentler T, Niessner H, Sinnberg T, Böhm KS, Hömberg N, Braumüller H, Dauch D, Zwirner S, Zender L, Sonanini D, Geishauser A, Bauer J, Eichner M, Jarick KJ, Beilhack A, Biskup S, Döcker D, Schadendorf D, Quintanilla-Martinez L, Pichler BJ, Kneilling M, Mocikat R, Röcken M (2020) Cancer immune control needs senescence induction by interferon-dependent cell cycle regulator pathways in tumours. Nat Commun 11(1):1335. https://doi.org/10.1038/s41467-020-14987-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grange M, Giordano M, Mas A, Roncagalli R, Firaguay G, Nunes JA, Ghysdael J, Schmitt-Verhulst AM, Auphan-Anezin N (2015) Control of CD8 T cell proliferation and terminal differentiation by active STAT5 and CDKN2A/CDKN2B. Immunology 145(4):543–557. https://doi.org/10.1111/imm.12471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the patients for donating their samples. This work was supported by a start-up Grant [VR04] for Professor Eyad Elkord from Qatar Biomedical research Institute, Qatar Foundation.

Author information

Authors and Affiliations

Authors

Contributions

RS contributed to data curation, methodology, formal analysis, investigation and writing the original draft; VN contributed to data curation, methodology and formal analysis; KM and MAN contributed to sample acquisition and investigation; EE contributed to conceptualization, resources, data curation, formal analysis, supervision, funding acquisition, validation, investigation, visualization, methodology, project administration, writing-review and editing; and RS contributed to conceptualization, data curation, formal analysis, validation, visualization, methodology, writing-review and editing.

Corresponding authors

Correspondence to Eyad Elkord or Ranad Shaheen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study was executed under ethical approvals from Hamad Medical Corporation, Doha, Qatar (Protocol no. MRC-02-18-012) and Qatar Biomedical Research Institute, Doha, Qatar (Protocol no. 2017-006).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The gene names on Figure 3C in the proofs were missing.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, R., Sasidharan Nair, V., Murshed, K. et al. Transcriptome of CD8+ tumor-infiltrating T cells: a link between diabetes and colorectal cancer. Cancer Immunol Immunother 70, 2625–2638 (2021). https://doi.org/10.1007/s00262-021-02879-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02879-7

Keywords

Navigation