Skip to main content

Advertisement

Log in

Pharmacological potentiation of monocyte-derived dendritic cell cancer immunotherapy

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Dendritic cells have been at the forefront of cancer-immunotherapy research for over 2 decades. They elicited that attention by having an unprecedented capacity to mount T cells responses against tumors. However, the clinical use of DC-based vaccination against established malignancies has resulted in limited clinical benefits. Several factors are responsible for limiting the efficacy of DC-based immunotherapy, such as the harmful influence of the tumor microenvironment on DCs activity. New insights into the inner process of DC-mediated T cell activation have supported the development of new strategies that potentiate DCs-based therapies. Herein, we identify signaling cascades that have recently been targeted by small molecules and biologicals to promote the activation of monocyte-derived DCs and decrease their susceptibility to becoming tolerogenic. While Statins can markedly enhance antigen presentation, protein kinase inhibitors can be used to increase the expression of co-receptors and adhesion molecules. STAT3 and IDO can be modulated to limit the production of regulatory factors that work against differentiation and activation. The targeting of multiple pathways simultaneously has also been found to produce synergism and drastically enhance DCs activity. Some of these strategies have recently yielded positive results in clinical settings against established malignancies such as non-small cell lung cancer. The emergence of these approaches opens the door for a new generation of potent dendritic cell-based therapeutics to fight cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32(19–20):1267–1284

    Article  CAS  PubMed  Google Scholar 

  3. Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE (2019) Personalized dendritic cell vaccines: recent breakthroughs and encouraging clinical results. Front Immunol 10:766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peoples GE, Holmes JP, Hueman MT, Mittendorf EA, Amin A, Khoo S et al (2008) Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. military cancer institute clinical trials group study I-01 and I-02. Clin Cancer Res 14(3):797–803

    Article  CAS  PubMed  Google Scholar 

  5. Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE et al (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29(3):330–336

    Article  CAS  PubMed  Google Scholar 

  6. Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH et al (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24(19):3089–3094

    Article  CAS  PubMed  Google Scholar 

  7. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6(5):1755–1766

    CAS  PubMed  Google Scholar 

  8. Lundberg K, Albrekt AS, Nelissen I, Santegoets S, de Gruijl TD, Gibbs S et al (2013) Transcriptional profiling of human dendritic cell populations and models–unique profiles of in vitro dendritic cells and implications on functionality and applicability. PLoS ONE 8(1):e52875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yewdall AW, Drutman SB, Jinwala F, Bahjat KS, Bhardwaj N (2010) CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells. PLoS ONE 5(6):e11144

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kleindienst P, Brocker T (2003) Endogenous dendritic cells are required for amplification of T cell responses induced by dendritic cell vaccines in vivo. J Immunol 170(6):2817–2823

    Article  CAS  PubMed  Google Scholar 

  11. Huang MN, Nicholson LT, Batich KA, Swartz AM, Kopin D, Wellford S et al (2020) Antigen-loaded monocyte administration induces potent therapeutic antitumor T cell responses. J Clin Invest 130(2):774–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bol KF, Schreibelt G, Rabold K, Wculek SK, Schwarze JK, Dzionek A et al (2019) The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J Immunother Cancer 7(1):109

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maier B, Leader AM, Chen ST, Tung N, Chang C, LeBerichel J et al (2020) A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580(7802):257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gardner A, de Mingo PÁ, Ruffell B (2020) Dendritic cells and their role in immunotherapy. Front Immunol 11:924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D (2020) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 20(1):7–24

    Article  CAS  PubMed  Google Scholar 

  16. Sabado RL, Balan S, Bhardwaj N (2017) Dendritic cell-based immunotherapy. Cell Res 27(1):74–95

    Article  CAS  PubMed  Google Scholar 

  17. Liu K, Nussenzweig MC (2010) Origin and development of dendritic cells. Immunol Rev 234(1):45–54

    Article  CAS  PubMed  Google Scholar 

  18. Schuler G, Steinman RM (1985) Murine epidermal langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161(3):526–546

    Article  CAS  PubMed  Google Scholar 

  19. Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I et al (1994) Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180(4):1263–1272

    Article  CAS  PubMed  Google Scholar 

  20. Alloatti A, Kotsias F, Magalhaes JG, Amigorena S (2016) Dendritic cell maturation and cross-presentation: timing matters! Immunol Rev 272(1):97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jung S, Unutmaz D, Wong P, Sano G-I, De losSantosSparwasser KT et al (2002) In vivo depletion of CD11c <sup>+</sup> dendritic cells abrogates priming of CD8<sup>+</sup> T cells by exogenous cell-associated antigens. Immunity 17(2):211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Joffre OP, Segura E, Savina A, Amigorena S (2012) Cross-presentation by dendritic cells. Nat Rev Immunol 12(8):557–569

    Article  CAS  PubMed  Google Scholar 

  23. Xia Y, Xie Y, Yu Z, Xiao H, Jiang G, Zhou X et al (2018) The mevalonate pathway is a druggable target for vaccine adjuvant discovery. Cell 175(4):1059–73.e21

    Article  CAS  PubMed  Google Scholar 

  24. Böttcher JP, Reis E, Sousa C (2018) The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4(11):784–792

    Article  PubMed  PubMed Central  Google Scholar 

  25. Robbins SH, Walzer T, Dembélé D, Thibault C, Defays A, Bessou G et al (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9(1):R17

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE et al (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207(6):1247–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sosa Cuevas E, Ouaguia L, Mouret S, Charles J, Fraipont F, Manches O et al (2020) BDCA1 + cDC2s, BDCA2 + pDCs and BDCA3 + cDC1s reveal distinct pathophysiologic features and impact on clinical outcomes in melanoma patients. Clin Trans Immunol 9(11):e1190

    Article  CAS  Google Scholar 

  28. Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31(1):563–604

    Article  CAS  PubMed  Google Scholar 

  29. Gutiérrez-Martínez E, Planès R, Anselmi G, Reynolds M, Menezes S, Adiko AC et al (2015) Cross-presentation of cell-associated antigens by MHC class I in dendritic cell subsets. Front Immunol 6:363

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, Bern MD et al (2020) cDC1 prime and are licensed by CD4(+) T cells to induce anti-tumour immunity. Nature 584(7822):624–629

    Article  CAS  PubMed  Google Scholar 

  31. Binnewies M, Miranda, Boldajipour B, Amanda J, David et al (2014) Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T Cell immunity. Cancer Cell 26(5):638–652

    Article  PubMed  Google Scholar 

  32. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235

    Article  CAS  PubMed  Google Scholar 

  33. Zelenay S, van der Veen AG, Böttcher Jan P, Snelgrove Kathryn J, Rogers N, Acton Sophie E et al (2015) Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162(6):1257–1270

    Article  CAS  PubMed  Google Scholar 

  34. Liu Q, Zhang C, Sun A, Zheng Y, Wang L, Cao X (2009) Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J Immunol 182(10):6207–6216

    Article  CAS  PubMed  Google Scholar 

  35. Bellone G, Carbone A, Smirne C, Scirelli T, Buffolino A, Novarino A et al (2006) Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol 177(5):3448–3460

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K et al (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A 107(46):19961–19966

    Article  CAS  PubMed  Google Scholar 

  37. Cubillos-Ruiz JR, Baird JR, Tesone AJ, Rutkowski MR, Scarlett UK, Camposeco-Jacobs AL et al (2012) Reprogramming tumor-associated dendritic cells in vivo using miRNA mimetics triggers protective immunity against ovarian cancer. Cancer Res 72(7):1683–1693

    Article  CAS  PubMed  Google Scholar 

  38. Zou W, Machelon V, Coulomb-L’Hermin A, Borvak J, Nome F, Isaeva T et al (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7(12):1339–1346

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi A, Kono K, Ichihara F, Sugai H, Fujii H, Matsumoto Y (2004) Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother 53(6):543–550

    Article  CAS  PubMed  Google Scholar 

  40. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25(1):267–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kini Bailur J, Gueckel B, Pawelec G (2016) Prognostic impact of high levels of circulating plasmacytoid dendritic cells in breast cancer. J Transl Med 14(1):151

    Article  PubMed  PubMed Central  Google Scholar 

  42. Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP et al (2004) Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res 10(22):7466–7474

    Article  CAS  PubMed  Google Scholar 

  43. Labidi-Galy SI, Treilleux I, Goddard-Leon S, Combes JD, Blay JY, Ray-Coquard I et al (2012) Plasmacytoid dendritic cells infiltrating ovarian cancer are associated with poor prognosis. Oncoimmunology 1(3):380–382

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tel J, Aarntzen EH, Baba T, Schreibelt G, Schulte BM, Benitez-Ribas D et al (2013) Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res 73(3):1063–1075

    Article  CAS  PubMed  Google Scholar 

  45. van der Sluis RM, Egedal JH, Jakobsen MR (2020) Plasmacytoid dendritic cells as cell-based therapeutics: A novel immunotherapy to treat human immunodeficiency virus infection? Front Cell Infect Microbiol 10:249

    Article  PubMed  PubMed Central  Google Scholar 

  46. Audsley KM, McDonnell AM, Waithman J (2020) Cross-presenting XCR1(+) dendritic cells as targets for cancer immunotherapy. Cells 9(3):565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balan S, Ollion V, Colletti N, Chelbi R, Montanana-Sanchis F, Liu H et al (2014) Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol (Baltimore, Md : 1950) 193(4):1622–1635

    Article  CAS  Google Scholar 

  48. Ferris ST, Ohara RA, Ou F, Wu R, Huang X, Kim S et al (2022) cDC1 vaccines drive tumor rejection by direct presentation independently of host cDC1. Cancer Immunol Res 10(8):920–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Santos PM, Butterfield LH (2018) Dendritic cell-based cancer vaccines. J Immunol 200(2):443–449

    Article  CAS  PubMed  Google Scholar 

  50. Posch W, Lass-Flörl C, Wilflingseder D (2016) Generation of human monocyte-derived dendritic cells from whole blood. J Vis Exp 118:e54968

    Google Scholar 

  51. Spranger S, Javorovic M, Bürdek M, Wilde S, Mosetter B, Tippmer S et al (2010) Generation of Th1-polarizing dendritic cells using the TLR7/8 agonist CL075. J Immunol 185(1):738–747

    Article  CAS  PubMed  Google Scholar 

  52. Hansen M, Met Ö, Svane IM, Andersen MH (2012) Cellular based cancer vaccines: type 1 polarization of dendritic cells. Curr Med Chem 19(25):4239–4246

    Article  CAS  PubMed  Google Scholar 

  53. Jonuleit H, Kühn U, Müller G, Steinbrink K, Paragnik L, Schmitt E et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27(12):3135–3142

    Article  CAS  PubMed  Google Scholar 

  54. Nuñez-Reza KJ, Naldi A, Sánchez-Jiménez A, Leon-Apodaca AV, Santana MA, Thomas-Chollier M et al (2021) Logical modelling of in vitro differentiation of human monocytes into dendritic cells unravels novel transcriptional regulatory interactions. Interface Focus 11(4):20200061

    Article  PubMed  PubMed Central  Google Scholar 

  55. Thompson ED, Enriquez HL, Fu Y-X, Engelhard VH (2010) Tumor masses support naive T cell infiltration, activation, and differentiation into effectors. J Exp Med 207(8):1791–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J et al (2004) CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21(2):279–288

    Article  CAS  PubMed  Google Scholar 

  57. Helft J, Böttcher J, Chakravarty P, Zelenay S, Huotari J, Schraml BU et al (2015) GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c(+)MHCII(+) macrophages and dendritic cells. Immunity 42(6):1197–1211

    Article  CAS  PubMed  Google Scholar 

  58. Jakubzick CV, Randolph GJ, Henson PM (2017) Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol 17(6):349–362

    Article  CAS  PubMed  Google Scholar 

  59. Shinde P, Fernandes S, Melinkeri S, Kale V, Limaye L (2018) Compromised functionality of monocyte-derived dendritic cells in multiple myeloma patients may limit their use in cancer immunotherapy. Sci Rep 8(1):5705

    Article  PubMed  PubMed Central  Google Scholar 

  60. De Vries IJ, Krooshoop DJ, Scharenborg NM, Lesterhuis WJ, Diepstra JH, Van Muijen GN et al (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63(1):12–17

    PubMed  Google Scholar 

  61. Wimmers F, Schreibelt G, Sköld AE, Figdor CG, De Vries IJ (2014) Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front Immunol 5:165

    Article  PubMed  PubMed Central  Google Scholar 

  62. Savina A, Peres A, Cebrian I, Carmo N, Moita C, Hacohen N et al (2009) The small GTPase Rac2 controls phagosomal alkalinization and antigen crosspresentation selectively in CD8+ dendritic cells. Immunity 30(4):544–555

    Article  CAS  PubMed  Google Scholar 

  63. Xu F, Wang Z, Zhang H, Chen J, Wang X, Cui L et al (2021) Mevalonate blockade in cancer cells triggers CLEC9A+ dendritic cell-mediated antitumor immunity. Can Res 81(17):4514–4528

    Article  CAS  Google Scholar 

  64. Ghittoni R, Napolitani G, Benati D, Uliveri C, Patrussi L, Laghi Pasini F et al (2006) Simvastatin inhibits the MHC class II pathway of antigen presentation by impairing Ras superfamily GTPases. Eur J Immunol 36(11):2885–2893

    Article  CAS  PubMed  Google Scholar 

  65. Troutman TD, Bazan JF, Pasare C (2012) Toll-like receptors, signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell Cycle 11(19):3559–3567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miao Y, Jiang M, Qi L, Yang D, Xiao W, Fang F (2020) BCAP regulates dendritic cell maturation through the dual-regulation of NF-κB and PI3K/AKT signaling during infection. Front Immunol 11:250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo J, Muse E, Christians AJ, Swanson SJ, Davila E (2019) An anticancer drug cocktail of three kinase inhibitors improved response to a dendritic cell-based cancer vaccine. Cancer Immunol Res 7(9):1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carter AB, Hunninghake GW (2000) A constitutive active MEK –> ERK pathway negatively regulates NF-kappa B-dependent gene expression by modulating TATA-binding protein phosphorylation. J Biol Chem 275(36):27858–27864

    Article  CAS  PubMed  Google Scholar 

  69. Aguilera-Montilla N, Chamorro S, Nieto C, Sánchez-Cabo F, Dopazo A, Fernández-Salguero PM et al (2013) Aryl hydrocarbon receptor contributes to the MEK/ERK-dependent maintenance of the immature state of human dendritic cells. Blood 121(15):e108–e117

    Article  CAS  PubMed  Google Scholar 

  70. Vella LJ, Pasam A, Dimopoulos N, Andrews M, Knights A, Puaux A-L et al (2014) MEK inhibition, alone or in combination with BRAF inhibition, affects multiple functions of isolated normal human lymphocytes and dendritic cells. Cancer Immunol Res 2(4):351

    Article  CAS  PubMed  Google Scholar 

  71. Hoyer S, Eberlein V, Schuler G, Berking C, Heinzerling L, Schaft N et al (2021) BRAF and MEK inhibitors affect dendritic-cell maturation and T-Cell stimulation. Int J Mol Sci 22(21):11951

    Article  CAS  PubMed  Google Scholar 

  72. Lu Y, Zhang M, Wang S, Hong B, Wang Z, Li H et al (2014) p38 MAPK-inhibited dendritic cells induce superior antitumour immune responses and overcome regulatory T-cell-mediated immunosuppression. Nat Commun 5:4229

    Article  CAS  PubMed  Google Scholar 

  73. Zhou Y, Wu J, Liu C, Guo X, Zhu X, Yao Y et al (2018) p38α has an important role in antigen cross-presentation by dendritic cells. Cell Mol Immunol 15(3):246–259

    Article  CAS  PubMed  Google Scholar 

  74. Wang S, Hong S, Yang J, Qian J, Zhang X, Shpall E et al (2006) Optimizing immunotherapy in multiple myeloma: Restoring the function of patients’ monocyte-derived dendritic cells by inhibiting p38 or activating MEK/ERK MAPK and neutralizing interleukin-6 in progenitor cells. Blood 108(13):4071–4077

    Article  CAS  PubMed  Google Scholar 

  75. Sprooten J, Agostinis P, Garg AD (2019) Chapter Five - Type I interferons and dendritic cells in cancer immunotherapy. In: Galluzzi L (ed) Lhuillier C. International review of cell and molecular biology, Academic Press, pp 217–262

    Google Scholar 

  76. Bourdeau A, Dubé N, Tremblay ML (2005) Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP. Curr Opin Cell Biol 17(2):203–209

    Article  CAS  PubMed  Google Scholar 

  77. Penafuerte C, Feldhammer M, Mills JR, Vinette V, Pike KA, Hall A et al (2017) Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFNγ signaling. Oncoimmunology 6(6):e1321185

    Article  PubMed  Google Scholar 

  78. Shen L, Evel-Kabler K, Strube R, Chen S-Y (2004) Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat Biotechnol 22(12):1546–1553

    Article  CAS  PubMed  Google Scholar 

  79. Evel-Kabler K, Song X-T, Aldrich M, Huang XF, Chen S-Y (2006) SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest 116(1):90–100

    Article  CAS  PubMed  Google Scholar 

  80. Ge C, Li R, Song H, Geng T, Yang J, Tan Q et al (2017) Phase I clinical trial of a novel autologous modified-DC vaccine in patients with resected NSCLC. BMC Cancer 17(1):884

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R et al (2004) Hyperactivation of STAT3 Is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172(1):464–474

    Article  CAS  PubMed  Google Scholar 

  82. Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15(4):234–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ott M, Kassab C, Marisetty A, Hashimoto Y, Wei J, Zamler D et al (2020) Radiation with STAT3 blockade triggers dendritic cell–T cell interactions in the glioma microenvironment and therapeutic efficacy. Clin Cancer Res 26(18):4983–4994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Assi H, Espinosa J, Suprise S, Sofroniew M, Doherty R, Zamler D et al (2014) Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM. PLoS ONE 9(5):e96318

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sharma MD, Rodriguez PC, Koehn BH, Baban B, Cui Y, Guo G et al (2018) Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c(+)CD103(+) monocytic antigen-presenting cells in tumors. Immunity 48(1):91-106.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Natarajan G, Oghumu S, Terrazas C, Varikuti S, Byrd JC, Satoskar AR (2016) A Tec kinase BTK inhibitor ibrutinib promotes maturation and activation of dendritic cells. Oncoimmunology 5(6):e1151592

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sharma MD, Pacholczyk R, Shi H, Berrong ZJ, Zakharia Y, Greco A et al (2021) Inhibition of the BTK-IDO-mTOR axis promotes differentiation of monocyte-lineage dendritic cells and enhances anti-tumor T cell immunity. Immunity 54(10):2354–71.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Durai V, Bagadia P, Granja JM, Satpathy AT, Kulkarni DH, Davidson JTt et al (2019) Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nat Immunol 20(9):1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Loschko J, Rieke GJ, Schreiber HA, Meredith MM, Yao KH, Guermonprez P et al (2016) Inducible targeting of cDCs and their subsets in vivo. J Immunol Methods 434:32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cancel JC, Crozat K, Dalod M, Mattiuz R (2019) Are conventional type 1 dendritic cells critical for protective antitumor immunity and how? Front Immunol 10:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pathak SK, Sköld AE, Mohanram V, Persson C, Johansson U, Spetz A-L (2012) Activated apoptotic cells induce dendritic cell maturation via engagement of toll-like receptor 4 (TLR4), dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN), and β2 Integrins. J Biol Chem 287(17):13731–13742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Noriko Uetani for her help with the original figures. AP is a Canderel Studentship and FRSQ doctoral scholarship recipient. MLT is a Distinguished James McGill Professor and the holder of the J. and J.L. Levesque Chair in Cancer Research. This work was supported by a Canadian Institute of Health Research Foundation grant to MLT (CIHR FDN-159923), the Richard and Edith Strauss Canada Foundation, the Aclon Foundation and the FRQS Oncopole program.

Author information

Authors and Affiliations

Authors

Contributions

AP and MLT had the idea for the article, AP performed the literature search, data analysis, and drafted the work. MLT critically revised the work and provided supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Michel L. Tremblay.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poirier, A., Tremblay, M.L. Pharmacological potentiation of monocyte-derived dendritic cell cancer immunotherapy. Cancer Immunol Immunother 72, 1343–1353 (2023). https://doi.org/10.1007/s00262-022-03333-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03333-y

Keywords

Navigation