Skip to main content

Advertisement

Log in

Minimum cement volume for vertebroplasty

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Percutaneous vertebroplasty is a widely used vertebral augmentation technique. It is a minimally invasive and low-risk procedure, but has some disadvantages with a relatively high number of bone cement leaks and adjacent vertebral fractures. The aim of this cadaveric study was to determine the minimum percentage of cement fill volume in vertebroplasty needed to restore vertebral stiffness and adjacent intradiscal pressure.

Methods

Thirteen thoracolumbar spine mobile segments were loaded to induce a vertebral fracture. After fracture vertebroplasty was performed, four times in the same fractured vertebra. The injected cement volume was 5 % of the fractured vertebral volume to reach 5, 10, 15 and 20 % of cement fill. Biomechanical testing was performed before the fracture, after the fracture and after each cement injection.

Results

After vertebral fracture compressive stiffness was reduced to 47 % of the pre-fracture value and was partially restored to 61 % after 10 % cement fill. With vertebroplasty intradiscal pressure gradually increased, depending on specimen position, from 48 to a total of 71 % at 15 % of cement fill.

Conclusions

Compressive stiffness and intradiscal pressure increase with the percentage of cement fill. Fifteen per cent of cement fill was the limit beyond which no substantial increase in compressive stiffness or intradiscal pressure could be detected and is the minimum volume of cement we recommend for vertebroplasty. In the average thoracolumbar vertebra this means 4–6 ml of cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heini PF, Wälchli B, Berlemann U (2000) Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J 9(5):445–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Chang X, Lv YF, Chen B, Li HY, Han XB, Yang K, Zhang W, Zhou Y, Li CQ (2014) Vertebroplasty versus kyphoplasty in osteoporotic vertebral compression fracture: a meta-analysis of prospective comparative studies. Int Orthop Sep 27

  3. Voormolen MH, Mali WP, Lohle PN et al (2007) Percutaneous vertebroplasty compared with optimal pain medication treatment: short-term clinical outcome of patients with subacute or chronic painful osteoporotic vertebral compression fractures. The VERTOS study. Am J Neuroradiol 28(3):555–556

    CAS  PubMed  Google Scholar 

  4. Dong R, Chen L, Tang T, Gu Y, Luo Z, Shi Q, Li X, Zhou Q, Yang H (2013) Pain reduction following vertebroplasty and kyphoplasty. Int Orthop 37(1):83–87

    Article  PubMed Central  PubMed  Google Scholar 

  5. Han S, Wan S, Ning L, Tong Y, Zhang J, Fan S (2011) Percutaneous vertebroplasty versus balloon kyphoplasty for treatment of osteoporotic vertebral compression fracture: a meta-analysis of randomised and non-randomised controlled trials. Int Orthop 35(9):1349–1358

    Article  PubMed Central  PubMed  Google Scholar 

  6. Dong R, Chen L, Gu Y, Han G, Yang H, Tang T, Xiaoqing C (2009) Improvement in respiratory function after vertebroplasty and kyphoplasty. Int Orthop 33(6):1689–1694

    Article  PubMed Central  PubMed  Google Scholar 

  7. García-Cosamalón J, del Valle ME, Calavia MG et al (2010) Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat 217(1):1–15

    Article  PubMed Central  PubMed  Google Scholar 

  8. Luo J, Daines L, Charalambous A, Adams MA, Annesley-Williams DJ, Dolan P (2009) Vertebroplasty: only small cement volumes are required to normalize stress distributions on the vertebral bodies. Spine 34(26):2865–2873

    Article  PubMed  Google Scholar 

  9. Bhatia C, Barzilay Y, Krishna M, Friesem T, Pollock R (2006) Cement leakage in percutaneous vertebroplasty: effect of preinjection gelfoam embolization. Spine 31(8):915–919

    Article  PubMed  Google Scholar 

  10. Martin DJ, Rad AE, Kallmes DF (2012) Prevalence of extravertebral cement leakage after vertebroplasty: procedural documentation versus CT detection. Acta Radiol 53(5):569–572

    Article  PubMed  Google Scholar 

  11. Krueger A, Bliemel C, Zettl R, Ruchholtz S (2009) Management of pulmonary cement embolism after percutaneous vertebroplasty and kyphoplasty: a systematic review of the literature. Eur Spine J 18(9):1257–1265

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ryu KS, Park CK, Kim MC, Kang JK (2002) Dose-dependent epidural leakage of polymethylmethacrylate after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures. J Neurosurg 96(1):56–61

    PubMed  Google Scholar 

  13. Trout AT, Kallmes DF, Kaufmann TJ (2006) New fractures after vertebroplasty: adjacent fractures occur significantly sooner. Am J Neuroradiol 27(1):217–223

    CAS  PubMed  Google Scholar 

  14. Trout AT, Kallmes DF, Layton KF, Thielen KR, Hentz JG (2006) Vertebral endplate fractures: an indicator of the abnormal forces generated in the spine after vertebroplasty. J Bone Miner Res 21(11):1797–1802

    Article  PubMed  Google Scholar 

  15. Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS (2003) Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226(1):119–124

    Article  PubMed  Google Scholar 

  16. Polikeit A, Nolte LP, Ferguson SJ (2003) The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine 28(10):991–996

    PubMed  Google Scholar 

  17. Rho YJ, Choe WJ, Chun YI (2011) Risk factors predicting the new symptomatic vertebral compression fractures after percutaneous vertebroplasty or kyphoplasty. Eur Spine J 21(5):905–911

    Article  PubMed Central  PubMed  Google Scholar 

  18. Liebschner MA, Rosenberg WS, Keaveny TM (2001) Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine 26(14):1547–1554

    Article  CAS  PubMed  Google Scholar 

  19. Belkoff SM, Mathis JM, Jasper LE, Deramond H (2001) The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine 26(14):1537–1541

    Article  CAS  PubMed  Google Scholar 

  20. Kinzl M, Benneker LM, Boger A, Zysset PK, Pahr DH (2012) The effect of standard and low-modulus cement augmentation on the stiffness, strength, and endplate pressure distribution in vertebroplasty. Eur Spine J 21(5):920–929

    Article  PubMed Central  PubMed  Google Scholar 

  21. Belkoff SM, Mathis JM, Jasper LE (2002) Ex vivo biomechanical comparison of hydroxyapatite and polymethylmethacrylate cements for use with vertebroplasty. AJNR Am J Neuroradiol 23(10):1647–1651

    PubMed  Google Scholar 

  22. Jin YJ, Yoon SH, Park KW, Chung SK, Kim KJ, Yeom JS, Kim HJ (2011) The volumetric analysis of cement in vertebroplasty: relationship with clinical outcome and complications. Spine 36(12):E761–E772

    Article  PubMed  Google Scholar 

  23. Kaufmann TJ, Trout AT, Kallmes DF (2006) The effects of cement volume on clinical outcomes of percutaneous vertebroplasty. Am J Neuroradiol 27(9):1933–1937

    CAS  PubMed  Google Scholar 

  24. Molloy S, Mathis JM, Belkoff SM (2003) The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty. Spine 28(14):1549–1554

    PubMed  Google Scholar 

  25. Stern D, Likar B, Pernuš F, Vrtovec T (2011) Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Phys Med Biol 56(23):7505–7522

    Article  PubMed  Google Scholar 

  26. O’Connell GD, Jacobs NT, Sen S, Vresilovic EJ, Elliott DM (2011) Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration. J Mech Behav Biomed Mater 4(7):933–942

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rohlmann A, Boustani HN, Bergmann G, Zander T (2010) A probabilistic finite element analysis of the stresses in the augmented vertebral body after vertebroplasty. Eur Spine J 19(9):1585–1595

    Article  PubMed Central  PubMed  Google Scholar 

  28. Berlemann D, Ferguson SJ, Nolte LP, Heini PF (2002) Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br 84(5):748–752

    Article  CAS  PubMed  Google Scholar 

  29. Nieuwenhuijse MJ, Bollen L, van Erkel AR, Dijkstra PD (2012) Optimal intravertebral cement volume in percutaneous vertebroplasty for painful osteoporotic vertebral compression fractures. Spine 37(20):1747–1755

    Article  PubMed  Google Scholar 

  30. Limthongkul W, Karaikovic EE, Savage JW, Markovic A (2010) Volumetric analysis of thoracic and lumbar vertebral bodies. Spine J 10(2):153–158

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors kindly thank DePuy Spine, Raynham, MA, USA, for donating the Confidence Spinal Cement System® for vertebroplasty.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rok Vengust.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinčič, D., Brojan, M., Kosel, F. et al. Minimum cement volume for vertebroplasty. International Orthopaedics (SICOT) 39, 727–733 (2015). https://doi.org/10.1007/s00264-014-2620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2620-7

Keywords

Navigation