Skip to main content
Log in

Structure and thermodynamics of calcium rare earth silicate oxyapatites, Ca2RE8(SiO4)6O2 (RE = Pr, Tb, Ho, Tm)

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Calcium rare earth silicate oxyapatites, (Ca2RE8(SiO4)6O2), are of interest as components of glass–ceramic nuclear waste forms. To assess their long-term behavior in a geologic repository, it is essential to determine their structure and thermodynamic stability at relevant conditions. In this work, we performed detailed structural and thermodynamic investigations on Ca2Pr8(SiO4)6O2, Ca2Tb8(SiO4)6O2, Ca2Ho8(SiO4)6O2, and Ca2Tm8(SiO4)6O2 by high energy synchrotron powder X-ray diffraction combined with Rietveld analysis and high temperature oxide melt drop solution calorimetry. Enthalpies of formation from constituent oxides (∆Hf,ox) were determined to be − 765.1 ± 22.8 kJ/mol for Ca2Pr8(SiO4)6O2; − 638.9 ± 20.5 kJ/mol for Ca2Tb8(SiO4)6O2; − 643.3 ± 10.3 kJ/mol for Ca2Ho8(SiO4)6O2; and − 403.2 ± 5.1 kJ/mol for Ca2Tm8(SiO4)6O2. These thermodynamic parameters were used in assessing the thermochemical stability of these phases in the presence of water vapor from room temperature to 600 K, as encountered in the subsurface environments of a geological repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides. J Geophys Res 75:3494–3500

    Article  Google Scholar 

  • Arden KM, Halden NM (1999) Crystallization and alteration history of britholite in rare-earth-element-enriched pegmatitic segregations associated with the Eden Lake Complex, Manitoba, Canada. Can Mineral 37:1239–1253

    Google Scholar 

  • Blanco Martín L, Rutqvist J, Birkholzer JT (2015) Long-term modeling of the thermal-hydraulic-mechanical response of a generic salt repository for heat-generating nuclear waste. Eng Geol 193:198–211

    Article  Google Scholar 

  • Bruno J, Ewing RC (2006) Spent nuclear fuel. Elements 2:343–349

    Article  Google Scholar 

  • Buscheck TA, Glascoe LG, Lee KH, Gansemer J, Sun Y, Mansoor K (2003) Validation of the multiscale thermohydrologic Model used for analysis of a proposed repository at Yucca Mountain. J Contam Hydrol 62–63:421–440

    Article  Google Scholar 

  • Chase MW (1998) NIST-JANAF thermochemical tables 2 volume-set. J Phys Chem Ref Data Monogr 1–1951

  • Chen F, Ewing RC, Clark SB (1999) The Gibbs free energies and enthalpies of formation of U6+ phases: an empirical method of prediction. Am Miner 84:650–664

    Article  Google Scholar 

  • Chen H, Marcial J, Ahmadzadeh M, Patil D, McCloy J (2020) Partitioning of rare earths in multiphase nuclear waste glass-ceramics. Int J Appl Glass Sci 11:1–16

    Article  Google Scholar 

  • Chong S, Riley BJ, Nienhuis ET, Lee D, Mccloy JS (2020) Syntheses and crystal structures of rare—earth oxyapatites. J Chem Crystallogr 8

  • Costa G, Harder BJ, Wiesner VL, Zhu D, Bansal N, Lee KN, Jacobson NS, Kapush D, Ushakov SV, Navrotsky A (2018) Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents. J Am Ceram Soc 102:2948–2964

    Article  Google Scholar 

  • Costa G, Harder BJ, Bansal NP, Kowalski BA, Stokes JL (2020) Thermochemistry of calcium rare-earth silicate oxyapatites. J Am Ceram Soc 103:1446–1453

    Article  Google Scholar 

  • Crum JV, Chong S, Peterson JA, Riley BJ (2019) Syntheses, crystal structures, and comparisons of rare-earth oxyapatites Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2. Acta Crystallogr E Crystallogr Commun 75:1020–1025

    Article  Google Scholar 

  • Dorogova M, Navrotsky A, Boatner LA (2007) Enthalpies of formation of rare earth orthovanadates, REVO4. J Solid State Chem 180:847–851

    Article  Google Scholar 

  • Ewing RC (1999) Nuclear waste forms for actinides. Proc Natl Acad Sci USA 96:3432–3439

    Article  Google Scholar 

  • Ewing RC (2001) The design and evaluation of nuclear-waste forms: clues from mineralogy. Can Mineral 39:697–715

    Article  Google Scholar 

  • Ewing RC (2015) Long-term storage of spent nuclear fuel. Nat Mater 14:252–257

    Article  Google Scholar 

  • Felsche J (1972) Rare earth silicates with the apatite structure. J Solid State Chem 5:266–275

    Article  Google Scholar 

  • Glasser L, Jenkins HBD (2011) Volume-based thermodynamics: a prescription for its application and usage in approximation and prediction of thermodynamic data. J Chem Eng Data 56:874–880

    Article  Google Scholar 

  • Golden RA, Mueller K, Opila EJ (2020) Thermochemical stability of Y2Si2O7 in high-temperature water vapor. J Am Ceram Soc 103:4517–4535

    Article  Google Scholar 

  • Gorman-Lewis D, Mazeina L, Fein JB, Szymanowski JES, Burns PC, Navrotsky A (2007) Thermodynamic properties of soddyite from solubility and calorimetry measurements. J Chem Thermodyn 39:568–575

    Article  Google Scholar 

  • Grevel K-D, Kahl W-A, Majzlan J, Navrotsky A, Lathe C, Fockenberg T (2005) Thermodynamic properties of magnesiochloritoid. Eur J Mineral 17:587–598

    Article  Google Scholar 

  • Guo X, Xu H (2017) Enthalpies of formation of polyhalite: a mineral relevant to salt repository. J Chem Thermodyn 114:44–47

    Article  Google Scholar 

  • Guo X, Szenknect S, Mesbah A, Labs S, Clavier N, Poinssot C, Ushakov SV, Curtius H, Bosbach D, Ewing RC, Burns PC, Dacheux N, Navrotsky A (2015) Thermodynamics of formation of coffinite, USiO4. 112, 6551–6555

  • Guo X, Tiferet E, Qi L, Solomon JM, Lanzirotti A, Newville M, Engelhard MH, Kukkadapu RK, Wu D, Ilton ES, Asta M, Sutton SR, Xu H, Navrotsky A (2016) U(v) in metal uranates: a combined experimental and theoretical study of MgUO4, CrUO4, and FeUO4. Dalton Trans 45:4622–4632

    Article  Google Scholar 

  • Guo X, White JT, Nelson AT, Migdisov A, Roback R, Xu H (2018) Enthalpy of formation of U3Si2: a high-temperature drop calorimetry study. J Nucl Mater 507:44–49

    Article  Google Scholar 

  • Guo X, Lü X, White JT, Benmore CJ, Nelson AT, Roback RC, Xu H (2019) Bulk moduli and high pressure crystal structure of U3Si2. J Nucl Mater 523:135–142

    Article  Google Scholar 

  • Haukwa CB, Wu YS, Bodvarsson GS (2003) Modeling thermal-hydrological response of the unsaturated zone at Yucca Mountain, Nevada, to thermal load at a potential repository. J Contam Hydrol 62–63:529–552

    Article  Google Scholar 

  • Hawthorne FC, Mills SJ, Hatert F, Rumsey MS (2021) Ontology, archetypes and the definition of “mineral species. Mineral Mag 85:1–18

    Google Scholar 

  • Helean KB, Navrotsky A (2002) Oxide melt solution calorimetry of rare earth oxides. Techniques, problems, cross-checks, successes. J Therm Anal Calorim 69:751–771

    Article  Google Scholar 

  • Hosseini SM, Navrotsky A (2013) Energetic effects of substitution of La-Nd and Si-Ge oxyapatite-type materials. J Am Ceram Soc 96:3915–3919

    Article  Google Scholar 

  • Hosseini SM, Shvareva T, Navrotsky A (2013) Energetics of lanthanum silicate apatite: Influence of interstitial oxygen and cation vacancy concentrations in La9.33 + x(SiO4)6O2 + 3x/2 and La10-XSrx(SiO4)6O3-0.5x. Solid State Ionics 233:62–66

    Article  Google Scholar 

  • Hughes JM (2015) The many facets of apatite. Am Miner 100:1033–1039

    Article  Google Scholar 

  • Hughes JM, Rakovan JF (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11:165–170

    Article  Google Scholar 

  • Jenkins HDB, Glasser L (2003) Standard absolute entropy, S298°, values from volume or density. Inorg Chem 42:8702–8708

    Article  Google Scholar 

  • Jones A, Slater PR, Saiful Islam M (2008) Local defect structures and ion transport mechanisms in the oxygen-excess apatite La9.67(SiO4)6O2.5. Chem Mater 20:5055–5060

    Article  Google Scholar 

  • Kazin PE, Zykin MA, Trusov LA, Vasiliev AV, Kremer RK, Dinnebier RE, Jansen M (2020) Multiple slow relaxation of magnetization in Dy(3+) confined in the crystal matrix of rare-earth-calcium silicates with the apatite structure. Dalton Trans 49:2014–2023

    Article  Google Scholar 

  • Konings RJM, Beneš O, Kovács A, Manara D, Sedmidubskỳ D, Gorokhov L, Iorish VS, Yungman V, Shenyavskaya E, Osina E (2014) The thermodynamic properties of the f-elements and their compounds: Part 2. The lanthanide and actinide oxides. J Phys Chem Ref Data 43:1–95

    Article  Google Scholar 

  • Leitner J, Sedmidubsky D, Ruzicka K, Svobo P (2013) Calorimetric determination of heat capacity, entropy and enthalpy of mixed oxides in the System CaO–SrO–Bi2O3–Nb2O5–Ta2O5. In: Elkordy AA (Ed) applications of calorimetry in a wide context - differential scanning calorimetry, isothermal titration calorimetry and microcalorimetry. BoD—Books on Demand, pp 385–406

  • Löfman J (2005) Simulation of hydraulic disturbances caused by the decay heat of the repository in Olkiluoto simulation of hydraulic disturbances caused by the decay heat of the repository in Olkiluoto

  • Majérus O, Caurant D, Quintas A, Dussossoy J-L, Bardez I, Loiseau P (2011) Effect of boron oxide addition on the Nd3+ environment in a Nd-rich soda-lime aluminoborosilicate glass. J Non-Cryst Solids 357:2744–2751

    Article  Google Scholar 

  • Massoni N, Hegron R, Campayo L (2018) Reinvestigation of the crystal structure of Ca2Ce8(SiO4)6O2 apatite by Rietveld refinement. Acta Crystallogr Sect E Crystallogr Commun 74:955–959

    Article  Google Scholar 

  • Meschter PJ, Opila EJ, Jacobson NS (2013) Water vapor-mediated volatilization of high-temperature materials. Annu Rev Mater Res 43:559–588

    Article  Google Scholar 

  • Migdisov A, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42

    Article  Google Scholar 

  • Migdisov A, Nisbet H, Li N, White J, Xu H, Nelson A, Roback R (2021) Instability of U3Si2 in pressurized water media at elevated temperatures. Commun Chem 4

  • Navrotsky A (1977) Progress and New Directions in High Temperature Calorimetry 2:89–104

    Google Scholar 

  • Navrotsky A (2001) Systematic trends and prediction of enthalpies of formation of refractory lanthanide and actinide ternary oxide phases. Ceram Trans 137–146

  • Navrotsky A (2014) Progress and new directions in calorimetry: a 2014 perspective. 97:3349–3359

  • Navrotsky A, Lee W, Mielewczyk-Gryn A, Ushakov SV, Anderko A, Wu H, Riman RE (2015) Thermodynamics of solid phases containing rare earth oxides. J Chem Thermodyn 88:126–141

    Article  Google Scholar 

  • Oberti R, Ottolini L, Della Ventura G, Pardodi GC (2001) On the symmetry and crystal chemistry of britholite: new structural and microanalytical data. Am Miner 86:1066–1075

    Article  Google Scholar 

  • Olds TA, Karcher SE, Kriegsman KW, Guo X, McCloy JS (2020) Oxidation and anion lattice defect signatures of hypostoichiometric lanthanide-doped UO2. J Nucl Mater 530:151959–151959

    Article  Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem 48:13–49

    Article  Google Scholar 

  • Pan Y, Li D, Feng R, Wiens E, Chen N, Chernikov R, Götze J, Lin J (2021) Uranyl binding mechanism in microcrystalline silicas: a potential missing link for uranium mineralization by direct uranyl co-precipitation and environmental implications. Geochim Cosmochim Acta 292:518–531

    Article  Google Scholar 

  • Patil DS, Konale M, Gabel M, Neill OK, Crum JV, Goel A, Stennett MC, Hyatt NC, McCloy JS (2018) Impact of rare earth ion size on the phase evolution of MoO3-containing aluminoborosilicate glass-ceramics. J Nucl Mater 510:539–550

    Article  Google Scholar 

  • Pauling L (1929) The principles determining the structure of complex ionic crystals. J Am Chem Soc 51:1010–1026

    Article  Google Scholar 

  • Plyasunov AV (2011) Thermodynamic properties of H4SiO4 in the ideal gas state as evaluated from experimental data. Geochim Cosmochim Acta 75:3853–3865

    Article  Google Scholar 

  • Poerschke DL, Jackson RW, Levi CG (2017) Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annu Rev Mater Res 47:297–330

    Article  Google Scholar 

  • Prescher C, Prakapenka VB (2015) DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res 35:223–230

    Article  Google Scholar 

  • Qi J, Guo X, Mielewczyk-Gryn A, Navrotsky A (2015) Formation enthalpies of LaLnO3 (Ln = Ho, Er, Tm and Yb) interlanthanide perovskites. J Solid State Chem 227:150–154

    Article  Google Scholar 

  • Quintas A, Caurant D, Majérus O, Dussossoy J-L, Charpentier T (2007) Effect of changing the rare earth cation type on the structure and crystallization behavior of an aluminoborosilicate glass. In: International Congress on Glass XXIst

  • Rakovan JF, Pasteris JD (2015) A technological gem: materials, medical, and environmental mineralogy of apatite. Elements 11:195–200

    Article  Google Scholar 

  • Reddy AA, Goel A, Tulyaganov DU, Sardo M, Mafra L, Pascual MJ, Kharton VV, Tsipis EV, Kolotygin VA, Ferreira JMF (2014) Thermal and mechanical stability of lanthanide-containing glass–ceramic sealants for solid oxide fuel cells. J Mater Chem A 2:1834–1846

    Article  Google Scholar 

  • Risbud AS, Helean KB, Wilding MC, Lu P, Navrotsky A (2001) Enthalpies of formation of lanthanide oxyapatite phases. J Mater Res 16:2780–2783

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. US Geological Survey Bulletin 2131

  • Sauer K, Caporuscio F, Rock M, Cheshire M, Jové-Colón C (2020) Hydrothermal interaction of Wyoming bentonite and opalinus Clay. Clays Clay Miner 68:144–160

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–766

    Article  Google Scholar 

  • Strzelecki AC, Bourgeois C, Kriegsman KW, Estevenon P, Wei N, Szenknect S, Mesbah A, Wu D, Ewing RC, Dacheux N, Guo X (2020a) Thermodynamics of CeSiO4: implications for actinide orthosilicates. Inorg Chem 59:13174–13183

    Article  Google Scholar 

  • Strzelecki AC, Kriegsman KW, Estevenon P, Goncharov V, Bai J, Szenknect S, Mesbah A, Wu D, McCloy JS, Dacheux N, Guo X (2020b) High-temperature thermodynamics of cerium silicates, A-Ce2Si2O7 and Ce4.67(SiO4)3O. ACS Earth Space Chem 4:2129–2143

    Article  Google Scholar 

  • Strzelecki AC, Barral T, Estevenon P, Mesbah A, Goncharov V, Baker J, Bai J, Clavier N, Szenknect S, Migdisov A, Xu H, Ewing RC, Dacheux N, Guo X (2021) The role of water and hydroxyl groups in the structures of stetindite and coffinite, MSiO4 (M = Ce, U). Inorg Chem

  • Takayama-Muromachi E, Navrotsky A (1993) Thermochemical study of Ln2CuO4. J Solid State Chem 106:349–356

    Article  Google Scholar 

  • Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all-purpose crystallography software package. J Appl Crystallogr 46:544–549

    Article  Google Scholar 

  • Weber WJE, Rodney C (2013) Chapter 10: ceramic waste forms for uranium and transuranium elements. In: Burns PCS, GE (ed) Uranium: cradle to grave. Mineralogical Association of Canada, pp 317–336

  • Weber WJ, Ewing RC, Vance ER, Gregg D, Peuget S, Wiss T (2019) Plutonium in waste forms. In: Clark DL, Geeson DA, Hanrahan RJ (eds) Plutonium handbook, 2nd edn. American Nuclear Society, pp 2349–2422

    Google Scholar 

  • Webster RI, Bansal NP, Salem JA, Opila EJ, Wiesner VL (2020) Characterization of thermochemical and thermomechanical properties of Eyjafjallajökull volcanic ash glass. Coatings 10:1–20

    Article  Google Scholar 

  • Winter JD (2013) Principles of igneous and metamorphic petrology, 2nd edn. Pearson, London

    Google Scholar 

  • Xu H, Wang Y, Barton LL (1999) Application of a linear free energy relationship to crystalline solids of MO2 and M(OH)4. J Nucl Mater 273:343–346

    Article  Google Scholar 

  • Xu H, Zhao Y, Zhang J, Wang Y, Hickmott DD, Daemen LL, Hartl MA, Wang L (2009) Anisotropic elasticity of jarosite: a high-P synchrotron XRD study. Am Miner 95:19–23

    Article  Google Scholar 

  • Xu H, Chavez ME, Mitchell JN, Garino TJ, Schwarz HL, Rodriguez MA, Rademacher DX, Nenoff TM (2015) Crystal structure and thermodynamic stability of Ba/Ti-substituted pollucites for radioactive Cs/Ba immobilization. J Am Ceram Soc 98:2634–2640

    Article  Google Scholar 

  • Xu H, Guo X, Bai J (2017) Thermal behavior of polyhalite: a high-temperature synchrotron XRD study. Phys Chem Miner 44:125–135

    Article  Google Scholar 

  • Zhang Y-Q, Radha AV, Navrotsky A (2013) Thermochemistry of two calcium silicate carbonate minerals: scawtite, Ca7(Si6O18)(CO32H2O, and spurrite, Ca5(SiO4)2(CO3). Geochim Cosmochim Acta 115:92–99

    Article  Google Scholar 

  • Zhang J, Chen H, Wang J, Wang D, Han D, Zhang J, Wang S (2019) Phase transformation process of Tb2O3 at elevated temperature. Scripta Mater 171:108–111

    Article  Google Scholar 

  • Zhang X, Reece ME, Cockreham CB, Sun H, Wang B, Xu H, Sun J, Guo X, Su H, Wang Y, Wu D (2021a) Formation energetics and guest—host interactions of molybdenum carbide confined in zeolite Y. Indus Eng Chem Res

  • Zhang X, Strzelecki AC, Cockreham CB, Goncharov VG, Li H, Sun J, Sun H, Guo X, Xu H, Su H, Wang B, Wang Y, Wu D (2021b) Thermodynamics of molybdenum trioxide encapsulated in zeolite Y. AIChE J

  • Zhou W, Apted MJ, Kessler JH (2010) The thermal-hydrological impact on increased spent-fuel storage capacity in Yucca mountain repository. Nucl Technol 170:336–352

    Article  Google Scholar 

  • Zozulya D, Lyalina L, Macdonald R, Bagiński B, Savchenko Y, Jokubauskas P (2019) Britholite group minerals from REE-rich lithologies of Keivy alkali granite—Nepheline Syenite Complex, Kola Peninsula, NW Russia. Minerals 9.

Download references

Acknowledgements

This research was supported by the institutional funds from the Department of Chemistry at Washington State University (WSU). We also acknowledge the support by the U.S. Department of Energy (DOE), Office of Nuclear Energy, Grants No. DE-NE0008582 and DE-NE0008431. Research presented in this article was also supported by the Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory (LANL). LANL, an affirmative action/equal opportunity employer, is managed by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract 89233218CNA000001. Portions of this research were also supported by collaboration, services, and infrastructure through the Nuclear Science Center User Facility at (WSU), and the Alexandra Navrotsky Institute for Experimental Thermodynamics. Portions of this research used Beamline 11-ID-C (XSD-SRS) of the Advance Photon Source (APS), a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory (ANL) under Contract No. DE-AC02-06CH11357. The authors acknowledge partial financial support from the U.S. Department of Energy Office of Nuclear Energy (DOE-NE). The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Contributions

XG and JSM conceived the research. ACS performed high temperature drop solution oxide melt calorimetry. YR performed ambient synchrotron XRD. ACS analyzed and refined all the synchrotron XRD. Samples were prepared by SC and BJR and supplied by JSM. All authors participated in discussions, interpretation of the data and writing of the manuscripts.

Corresponding author

Correspondence to Xiaofeng Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Topical Collection “Experimental & Analytical Techniques at Extreme & Ambient Conditions”, guest edited by Stella Chariton, Vitali B. Prakapenka and Haozhe (Arthur) Liu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strzelecki, A.C., Ren, Y., Chong, S. et al. Structure and thermodynamics of calcium rare earth silicate oxyapatites, Ca2RE8(SiO4)6O2 (RE = Pr, Tb, Ho, Tm). Phys Chem Minerals 49, 13 (2022). https://doi.org/10.1007/s00269-022-01187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-022-01187-5

Keywords

Navigation