Skip to main content
Log in

ET mapping for agricultural water management: present status and challenges

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Evapotranspiration (ET) is an essential component of the water balance. Remote sensing based agrometeorological models are presently most suited for estimating crop water use at both field and regional scales. Numerous ET algorithms have been developed to make use of remote sensing data acquired by sensors on airborne and satellite platforms. In this paper, a literature review was done to evaluate numerous commonly used remote sensing based algorithms for their ability to estimate regional ET accurately. The reported estimation accuracy varied from 67 to 97% for daily ET and above 94% for seasonal ET indicating that they have the potential to estimate regional ET accurately. However, there are opportunities to further improving these models for accurately estimating all energy balance components. The spatial and temporal remote sensing data from the existing set of earth observing satellite platforms are not sufficient enough to be used in the estimation of spatially distributed ET for on-farm irrigation management purposes, especially at a field scale level (∼10 to 200 ha). This will be constrained further if the thermal sensors on future Landsat satellites are abandoned. However, research opportunities exist to improve the spatial and temporal resolution of ET by developing algorithms to increase the spatial resolution of reflectance and surface temperature data derived from Landsat/ASTER/MODIS images using same/other-sensor high resolution multi-spectral images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen R, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56. FAO, Rome

    Google Scholar 

  • Allen RG, Tasumi M, Trezza R (2002) METRICTM: mapping evapotranspiration at high resolution—application manual for Landsat satellite imagery. University of Idaho, Kimberly

    Google Scholar 

  • Allen RG, Tasumi M, Morse A (2005) Satellite-based evapotranspiration by METRIC and Landsat for western states water management. US Bureau of Reclamation Evapotranspiration Workshop, Feb 8–10, 2005, Ft. Collins

  • Allen RG, Tasumi M, Trezza R (2007a) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model. ASCE J Irrigation Drainage Eng (in press)

  • Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite-Torres I, Robison CW (2007b) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-applications. ASCE J Irrigation Drainage Eng (in press)

  • Alves I, Fontes JC, Pereira LS (2000) Evapotranspiration estimation from infrared surface temperature. I: Performance of the flux equation. Trans ASAE 43(3):591–598

    Google Scholar 

  • Anderson CM, Kustas WP, Norman JM (2007) Upscaling flux observations from local to continental scales using thermal remote sensing. Agron J 99:240–254

    Article  Google Scholar 

  • Bartholic JF, Namken LN, Wiegand CL (1972) Aerial thermal scanner to determine temperatues of soils and of crop canopies differing in water stress. Agron J 64:603–608

    Article  Google Scholar 

  • Bastiaanssen WGM (1995) Regionalization of surface flux densities and moisture indicators in composite terrain: a remote sensing approach under clear skies in Mediterranean climates. PhD Dissertation, CIP Data Koninklijke Blibliotheek, Den Haag, The Netherlands

  • Bastiaanssen WGM, Menenti M, Feddes RA, Holtslang AA (1998) A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J Hydrol 212–213:198–212

    Article  Google Scholar 

  • Bastiaanssen WGM, Noordman EJM, Pelgrum H, Davids G, Thoreson BP, Allen RG (2005) SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. ASCE J Irrigation Drainage Eng 131(1):85–93

    Article  Google Scholar 

  • Bausch WC (1993) Soil background effects on reflectance-based crop coefficients for corn. Remote Sensing Environ 46:213–222

    Article  Google Scholar 

  • Bausch WC, Neale CMU (1987) Crop coefficients derived from reflectance canopy radiation: a concept. Trans ASAE 30(3):703–709

    Google Scholar 

  • Brest CL, Goward SN (1987) Driving surface albedo measurements from narrow band satellite data. Int J Remote Sensing 8:351–367

    Article  Google Scholar 

  • Brown KW (1974) Calculations of evapotranspiration from crop surface temperature. Department of Soil and Crop Science, College Station

    Google Scholar 

  • Brown KW, Rosenberg NJ (1973) A resistance model to predict evapotranspiration and its application to a sugar beet field. Agron J 68:635–641

    Google Scholar 

  • Brunsell NA, Gillies R (2002) Incorporating surface emissivity into a thermal atmospheric correction. Photogrammetric Eng Remote Sensing J 68(12):1263–1269

    Google Scholar 

  • Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resources Res 11:742–744

    Article  Google Scholar 

  • Brutsaert W (1999) Aspect of bulk atmospheric boundary layer similarity under free-convective conditions. Rev Geophys 37:439–451

    Article  Google Scholar 

  • Brutsaert W, Sugita M (1992) Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. J Geophys Res 97:18377–18382

    Google Scholar 

  • Chávez JL, Neale CMU (2003) Validating airborne multispectral remotely sensed heat fluxes with ground energy balance tower and heat flux source area (footprint) functions. ASAE Paper No. 033128. St. Joseph, Michigan

    Google Scholar 

  • Chávez JL, Neale CMU, Hipps LE, Prueger JH, Kustas WP (2005) Comparing aircraft-based remotely sensed energy balance fluxes with eddy covariance tower data using heat flux source area functions. J Hydrometeorol AMS 6(6):923–940

    Article  Google Scholar 

  • Chavez JL, Neale CMU (2007) Daily evapotranspiration estimates from airborne remote sensing and ground data inputs. Trans ASABE (submitted)

  • Chavez JL, Gowda PH, Evett SR, Colaizzi PD, Howell TA, Marek T (2007) An application of METRIC for ET mapping in the Texas high plains. Trans ASABE (submitted)

  • Chehbouni A, Lo Seen D, Njoku EG, Monteny B (1996) Examination of the difference between radiative and aerodynamic surface temperatures over sparsely vegetated surfaces. Remote Sensing Environ 58:177–186

    Article  Google Scholar 

  • Chehbouni A, Nouvellon Y, Lhomme J-P, Watts C, Boulet G, Kerr YH, Moran MS, Goodrich DC (2001) Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature. J Agric Forest Meteorol 108:55–65

    Article  Google Scholar 

  • Choudhury FJ, Idso SB, Reginato RJ (1987) Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation. Agric Forest Meteorol 39:283–297

    Article  Google Scholar 

  • Colaizzi PD, Evett SR, Howell TA, Tolk JA (2004) Comparison of aerodynamic and radiometric surface temperature using precision weighing lysimeters. In: Gao W, Shaw DR (eds) Proceedings of SPIE 49th annual meeting, remote sensing and modeling of ecosystems for sustainability, vol 5544, pp 215–229

  • Colaizzi PD, Evett SR, Howell TA, Tolk JA (2006a) Comparison of five models to scale daily evapotranspiration from one-time-of-day measurements. Trans ASABE 49(5):1409–1417

    Google Scholar 

  • Colaizzi PD, Evett SR, Howell TA, Tolk JA, Li F (2006b) Evaluation of a two-source balance model in an advective environment. Proc. World Enviromental and Water Resources Congress. May 21–24, 2006. Omaha, NE. EWRI, ASCE (CD-ROM)

  • Crago RD (2000) Conservation and variability of the evaporative fraction during the daytime. J Hydrol 180(1–4):173–194

    Google Scholar 

  • Crago R, Friedl M, Kustas W, Wang Y (2004) Investigation of aerodynamic and radiometric land surface temperatures. NASA Scientific and Technical Aerospace Reports (STAR) 42(1)

  • Diak GR, Rabin RM, Gallo KP, Neale CM (1995) Regional scale comparisons of NDVI, soil moisture indices from surface and microwave data and surface energy budgets evaluated from satellite and in-situ data. Remote Sensing Rev 12:355–382

    Google Scholar 

  • D’Urso G, Santini A (1996) A remote sensing and modeling integrated approach for the management of irrigation distribution systems. In: Proceedings of the international conference on “Evapotranspiration and Irrigation Scheduling”, San Antonio (USA), vol 4–6, pp 435–441

  • Er-Raki S, Chehbouni A, Guemouria N, Duchemin B, Ezzahar J, Hadria R (2007) Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric Water Manage 87:41–54

    Article  Google Scholar 

  • Gómez M, Olioso A, Sobrino JA, Jacob F (2005) Retrieval of evapotranspiration over the Alpille/ReSeDA experimental site using airborne POLDER sensor and a thermal camera. Remote Sensing Environ 96:399–408

    Article  Google Scholar 

  • Gonzalez-Dugo MP, Neale CMU, Mateos L, Kustas WP, Li F (2006) Comparison of remotely sensing-based energy balance methods for estimating crop evapotranspiration. In: Owe M, D’Urso G, Christopher Neale MU, Gouweleeuw BT (eds) Proceeding of SPIE, vol 6359: remote sensing for agriculture, ecosystems, and hydrology VIII, p 6359Z

  • Hanson RL (1991) Evapotranspiration and droughts. In: Paulson RW, Chase EB, Roberts RS, Moody DW, Compilers, National Water Summary 1988-89-hydrologic events and floods and droughts: U.S. Geological Survey Water-Supply Paper 2375, pp 99–104

  • Harikishan J, Neale CMU, Wright JL (2006) Development and validation of canopy reflectance based crop coefficient for potato. Agric Water Manage (in press)

  • Hatfield JL, Perrier A, Jackson RD (1983) Estimation of evapotranspiration at on time-of-day using remotely sensed surface temperatures. Agric Water Manage 7:341–350

    Article  Google Scholar 

  • Hatfield JL, Reginato RJ, Idso SB (1984) Evaluation of canopy temperature-evapotranspiration model over various crops. Agric Forest Meteorol 32:41–53

    Article  Google Scholar 

  • Heilman JL, Kanemasu ET, Rosenberg NJ, Blad BL (1976) Thermal scanner measurements of canopy temperatures to estimate evapotranspiration. Remote Sensing Environ 5:137–145

    Article  Google Scholar 

  • Heilman JL, Heilman WE, Moore DG (1982) Evaluating the crop coefficient using spectral reflectance. Agron J 74:967–971

    Article  Google Scholar 

  • Hipps LE (1989) The infrared emissivities of soil and Artemisia tridentate and subsequent temperature corrections in a shrub-steppe ecosystem. Remote Sensing Environ 27:337–342

    Article  Google Scholar 

  • Howell TA, Evett SR, Tolk JA, Copeland KS, Dusek DA, Colaizzi PD (2006) Crop coefficients developed at Bushland, Texas for corn, wheat, sorghum, soybean, cotton, and alfalfa. In: Proceedings of 2006 ASCE-EWRI World Water and Environmental Resources Congress, 21–25 May, Omaha

  • Huete A (1988) A soil adjusted vegetation index (SAVI). Remote Sensing Environ 25:295–309

    Article  Google Scholar 

  • Hunsaker DJ, Barnes EM, Clarke TR, Fitzgerald GJ, Pinter PJ Jr (2005) Cotton irrigation scheduling using remotely sensed and FAO-56 basal crop coefficients. Trans ASAE 48(4):1395–1407

    Google Scholar 

  • Idso SB, Schmugge TJ, Jackson RD, Raginato RJ (1975) The utility of surface temperature measurements for the remote sensing of the soil water status. J Geophys Res 80:3044–3049

    Google Scholar 

  • Jackson RD (1984) Remote sensing of vegetation characteristics for farm management. SPIE 475:81–96

    Google Scholar 

  • Jackson RD, Reginato RJ, Idso SB (1977) Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resour Res 13:651–656

    Article  Google Scholar 

  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ (1980) Remotely sensed crop temperatures and reflectances as inputs to irrigation scheduling. In: Proceedings of American Society of Civil Engineers, Irrigation and Drainage Division, Specialty Conference, Boise, Idaho, pp 390–397

  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ Jr (1981) Canopy temperature as a crop water stress indicator. Water Resour Res 17(4):1133–1138

    Article  Google Scholar 

  • Jackson RD, Hatfield JL, Reginato RJ, Idso SB, Pinter PJ Jr (1983) Estimation of daily evapotranspiration from one time-of-day measurements. Agric Water Manage 7:351–362

    Article  Google Scholar 

  • Jackson RD, Pinter PJ Jr, Reginato RJ (1985) Net radiation calculated from remote and multispectral and ground station meteorological data. Agric Forest Meteorol 35:153–164

    Article  Google Scholar 

  • Jackson RD, Moran MS, Gay LW, Raymond LH (1987) Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data. Irrigation Sci 8:81–90

    Article  Google Scholar 

  • Jacob F, Olioso A, Gu XF, Su A, Seguin B (2002) Mapping surface fluxes using airborn visible, near infrared remote sensing data and a spatialized surface energy balance model. Agronomie 22:669–680

    Article  Google Scholar 

  • Kalma JD, Jupp DLB (1990) Estimating evaporation from pasture using infrared thermometry: evaluation of a one-layer resistance model. Agric Forest Meteorol 51:223–246

    Article  Google Scholar 

  • Kanemasu ET, Stone LR, Powers WL (1977) Evapotranspiration model tested for soybeans and sorghum. Agron J 68:569–572

    Article  Google Scholar 

  • Kimes DS (1980) Effects of vegetation canopy structure on remotely sensed canopy temperatures. Remote Sensing Environ 10:165–174

    Article  Google Scholar 

  • Kimes DS (1983) Dynamics of directional reflectance factor distributions for vegetation canopies. Appl Opt 22(9):1364–1372

    Article  PubMed  CAS  Google Scholar 

  • Kimes DS, Smith JA, Ranson KJ (1980) Vegetation reflectance measurements as a function of solar zenith angle. Photogrammetric Eng Remote Sensing 46:1563–1573

    Google Scholar 

  • Kustas WP, Daughtry CST (1990) Estimation of the soil heat flux/net radiation ratio from multispectral data. Agric Forest Meteorol 49:205–223

    Article  Google Scholar 

  • Kustas WP, Norman JM (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol Sci J 41(4):495–516

    Google Scholar 

  • Kustas WP, Norman JM (1999) Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric Forest Meteorol 94:13–29

    Article  Google Scholar 

  • Kustas WP, Choudhury BJ, Moran MS, Reginato RJ, Jackson RD, Gay LW, Weaver HL (1989) Determination of sensible heat flux over sparse canopy using thermal infrared data. Agric Forest Meteorol 44:197–216

    Article  Google Scholar 

  • Kustas WP, French AN, Hatfield JL, Jackson TJ, Moran MS, Rango A, Ritchie JC, Schumgge TJ (2003) Remote sensing research in Hydrometeorology. Photogrammetric Eng Remote Sensing 69(6):631–646

    Google Scholar 

  • Kustas WP, Li F, Jackson TJ, Prueger JH, MacPherson JI, Wolde M (2004) Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa. Remote Sensing Environ 92:535–547

    Article  Google Scholar 

  • Kustas WP, Anderson MA, Norman JM, Li F (2007) Utility of radiometric-aerodynamic temperature relations for heat flux estimation. Boundary-Layer Meteorol 122:167–187

    Article  Google Scholar 

  • Loheide II SP, Gorelick SM (2005) A local-scale, high resolution evapotranspiration mapping algorithm (ETMA) with hydroecological applications at riparian meadow restoration sites. Remote Sensing Environ 98:182–200

    Article  Google Scholar 

  • Matsushima D (2000) An estimation method for regional sensible heat flux on vegetation using satellite infrared temperature. In: Proceedings of the 15th conference of hydrology/80th AMS annual meeting, P1.29. Long Beach

  • Matsushima D (2005) Relations between aerodynamic parameters and heat transfer and thermal-infrared thermometry in the bulk surface formulation. J Meteorol Soc Jpn 83(3):373–389

    Article  Google Scholar 

  • McCabe MF, Wood EF (2006) Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sensing Environ 105:271–285

    Article  Google Scholar 

  • Menenti M, Choudhury BJ (1993) Parameterization of land surface evapotranspiration using a location dependent potential evapotranspiration and surface temperature range. In: Bolle HJ et al (eds) Proceedings of exchange processes at the land surface for a range of space and time scales. IAHS Publ 212, pp 561–568

  • Menenti M, Jia L, Su Z (2003) On SEBI-SEBS validation in France, Intaly, Spain, USA and China. In: Co-Chair Allen RG, Bastiaanssen W (eds) Proceedings of the workshop on use of remote sensing of crop evapotranspiration for large regions. International Commission on Irrigation and Drainage (ICID), Montpellier

  • Micheal MG, Bastiaanssen WGM (2000) A new simple method to determine crop coefficients for water allocation planning from satellites: results from Kenya. Irrigation Drainage Syst 14:237–256

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Explor Biol 19:205–234

    CAS  Google Scholar 

  • Monteith JL (1981) Evaporation and surface temperature. Quart J R Meteorol Soc 107:1–27

    Article  Google Scholar 

  • Moran MS (1994) Irrigation management in Arizona using satellites and airplanes. Irrigation Sci 15(1):35–44

    Google Scholar 

  • Moran MS, Jackson RD, Raymond LH, Gay LW, Slater PN (1989) Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data. Remote Sensing Environ 30:77–87

    Article  Google Scholar 

  • Moran MS, Vidal A, Troufleau D, Qi J, Clarke TR, Pinter PJ Jr, Mitchell TA, Inoue Y, Neale CMU (1997) Combining multifrequency microwave and optical data for crop management. Remote Sensing Environ 61:96–109

    Article  Google Scholar 

  • Neale CMU, Bausch WC, Heeremann DF (1989) Development of reflectance-based crop coefficients for corn. Trans ASAE 32(6):1891–1899

    Google Scholar 

  • Neale CMU, Ahmed RH, Moran MS, Pinter PJ, Qi J, Clarke TR (1996) Estimating seasonal cotton evapotranspiration using canopy reflectance. In: Camp CR, Sadler EJ, Yoder RE (eds) Evapotranspiration and irrigation scheduling: proceedings of the international conference, November 3–6, 1996. San Antonio. St. Joseph, Michigan, pp 173–181

  • Neale CMU, Jayanthi H, Wright JL (2003) Crop and irrigation water management using high resolution airborne remote sensing. In: Proceedings of 54th IEC meeting of the international commission on irrigation and drainage (ICID) workshop remote sensing of ET for large regions, 17 Sept (2003) Montpellier, France. CD-ROM. New Delhi, India

  • Norman JM, Becker F (1995) Terminology in thermal infrared remote sensing of natural surfaces. Agric For Meteorol 77:153–166

    Article  Google Scholar 

  • Norman JM, Kustas WP, Humes KS (1995) A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature. Agric For Meteorol 77:263–293

    Article  Google Scholar 

  • Norman JM, Kustas WP, Prueger JH, Diak GR (2000a) Surface flux estimation using radiometric temperature: a dual temperature difference method to minimize measurement error. Water Resour Res 36:2263–2274

    Article  Google Scholar 

  • Norman JM, Kustas WP, Prueger JH, Diak GR (2000b) Surface flux estimation using radiometric temperature: dual-temperature-difference method to minimize measurement errors. Water Resour Res 36(8):2263–2274

    Article  Google Scholar 

  • Norman JM, Anderson MC, Kustas WP, French AN, Mecikalski J, Torn R, Diak GR, Schmugge TJ, Tanner BCW (2003) Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour Res 39(8):1221

    Article  Google Scholar 

  • Oncley SP, Foken T, Vogt R, Bernhofer C, Liu H, Sorbjan Z Pitacco A, Grantz D, Ribeiro L (2000) The EBEX 2000 field experiment. In: 14th Symposium on boundary layers and turbulence, Aspen. American Meteorological Society, Boston, pp 322–324

  • Park AB, Colwell RN, Meyers VF (1968) Resource survey by satellite; science fiction coming true. Yearbook of Agriculture, pp 13–19

  • Price JC (1982) Estimation of regional scale evapotranspiration through analysis of satellite thermal-infrared data. IEEE Trans Geosci Remote Sens GE-20:286–292

    Article  Google Scholar 

  • Reginato RJ, Jackson RD, Pinter PJ Jr (1985) Evapotranspiration calculated from remote multi-spectral and ground station meteorological data. Remote Sensing Environ 18:75–89

    Article  Google Scholar 

  • Roerink GJ, Su B, Menenti M (2000) S-SEBI A simple remote sensing algorithm to estimate the surface energy balance. Phys Clim Earth (B) 25(2):147–157

    Google Scholar 

  • Rosenberg NJ, Blad BL, Verma SB (1983) Microclimate, the biological environment, 2nd edn. Wiley, New York, 495p

  • Rouse JW, Haas RH Jr, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: Proceedings of the ERTS-1 3rd Symposium, vol 1. NASA SP-351. NASA, Washington, pp 309–317

  • Seguin B, Itier B (1983) Using midday surface temperature to estimate daily evapotranspiration from satellite thermal data IR. Int J Remote Sensing 4(2):371–383

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Nounoua L (1996) A revised land surface parameterization (SiB2) for atmospheric GCMS, Part 1: Model formulation. J Clim 9:676–705

    Article  Google Scholar 

  • Shuttleworth WJ, Gurney RJ (1990) The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Quart J R Meteorol Soc 116:497–519

    Article  Google Scholar 

  • Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops—an energy combination theory. Quart J Roy Meteorol Soc 111:839–855

    Article  Google Scholar 

  • Stone LR, Horton ML (1974) Estimating evapotranspiration using canopy temperatures: field evaluation. Agron J 66:450–454

    Article  Google Scholar 

  • Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent fluxes. Hydrol Earth Syst Sci 6:85–99

    Article  Google Scholar 

  • Su Z, Schmugge T, Kustas WP, Massman WJ (2001) An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J Appl Meteorol 40:1933–1951

    Article  Google Scholar 

  • Su H, McCabe MF, Wood EF, Su Z, Prueger JH (2005) Modeling evapotranspiration during SMACEX: comparing two approaches local- and regional-scale prediction. J Hydrometerol 6(6):910–922

    Article  Google Scholar 

  • Taconet O, Bernard R, Vidal-Madjar D (1986) Evapotranspiration over an agricultural region using a surface flux/temperature model based on NOAA-AVHRR data. J Clim Appl Meteorol 25:284–307

    Article  Google Scholar 

  • Tasumi M, Trezza R, Allen RG, Wright JL (2003) U.S. Validation tests on the SEBAL model for evapotranspiration via satellite. In: Proceedings of 54th IEC meeting of the international commission on irrigation and drainage (ICID) Workshop remote sensing of ET for large regions, 17 Sept (2003) Montpellier, France

  • Tasumi M, Trezza R, Allen RG, Wright JL (2005a) Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. J Irrigation Drainage Syst 19:355–376

    Article  Google Scholar 

  • Tasumi M, Allen RG, Trezza R, Wright JL (2005b) Satellite-based energy balance to assess within-population variance of crop coefficient curves. ASCE J Irrigation Drainage Eng 131(1):94–109

    Article  Google Scholar 

  • Tasumi M, Allen RG, Trezza R (2006) Calibrating satellite-based vegetation indices to estimate evapotranspiration and crop coefficients. In: Wichelns D, Anderson SS (eds) Proceedings of the 2006 USCID Water Management Conference. Ground water and surface water under stress: competition, interaction, solutions. Publisher USCID, Denver

  • Todd RW, Evett SR, Howell TA (2000) The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment. Agric Forest Meteorol 103:335–348

    Article  Google Scholar 

  • Trezza R (2002) Evapotranspiration using a satellite-based surface energy balance with standardized ground control. PhD Disseration, Biological and Irrigation Engineering Department, Utah State University, Logan

  • Trofleau D, Vidal A, Beaudon A, Moran MS, Weltz MA, Goodrich DC, Washburne J, Rahman AF (1997) Optical-microwave synergy for estimating surface sensible heat flux over a semi-arid rangeland. Remote Sensing Rev 15:113–132

    Google Scholar 

  • Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesley ML (2000) Correcting eddy-covariance flux underestimates over grassland. Agric Forest Meteorol 103:279–300

    Article  Google Scholar 

  • Verma SB, Rosenberg NJ, Blad BL, Baradas MW (1976) Resistance-energy balance method for predicting evapotranspiration: determination of boundary layer resistance and evaluation of error effects. Agron J 68:776–782

    Article  Google Scholar 

  • Zibognon M, Crago R, Suleiman A (2002) Conversion of radiometric to aerodynamic surface temperature with an anishothermal canopy model. Water Resour Res 38(6):1067

    Article  Google Scholar 

  • Zhang L, Lemeur R (1995) Evaluation of daily ET estimates from instantaneous measurements. Agric Forest Meteorol 74:139–154

    Article  Google Scholar 

  • Zhang Y, Wegehenkel M (2006) Integration of MODIS data into a single model for the spatial distributed simulation of soil water content and evapotranspiration. Remote Sensing Environ 104:393–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna H. Gowda.

Additional information

Communicated by A. Kassam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gowda, P.H., Chavez, J.L., Colaizzi, P.D. et al. ET mapping for agricultural water management: present status and challenges. Irrig Sci 26, 223–237 (2008). https://doi.org/10.1007/s00271-007-0088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-007-0088-6

Keywords

Navigation