Skip to main content
Log in

Clinicopathological differences exist between CALR- and JAK2-mutated myeloproliferative neoplasms despite a similar molecular landscape: data from targeted next-generation sequencing in the diagnostic laboratory

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Mutations in CALR have recently been detected in JAK2-negative myeloproliferative neoplasms (MPNs) and are key pathological drivers in these diseases. CALR-mutated MPNs are shown to have numerous clinicopathological differences to JAK2-mutated MPNs. The basis of these differences is poorly understood. It is unknown whether these differences result directly from any differences in intracellular signalling abnormalities induced by JAK2/CALR mutations or whether they relate to other phenomena such as a differing spectrum of genetic lesions between the two groups. We aimed to review the clinicopathological and molecular features of CALR- and JAK2-mutated MPNs from samples referred for diagnostic testing using a custom-designed targeted next-generation sequencing (NGS) panel. Eighty-nine CALR-mutated cases were compared with 70 JAK2-mutated cases. CALR-mutated MPNs showed higher platelet counts and a female predominance as compared to JAK2-mutated MPNs in our cohort. We have also observed differences between CALR mutation subtypes in terms of disease phenotype, mutational frequency and allelic burden. Type 1 CALR mutations were found to be more common in myelofibrosis, associated with a higher frequency and number of additional mutations and a higher mutant allelic burden as compared to type 2 CALR mutations. Despite these biological differences, our molecular characterisation suggests that CALR- and JAK2-mutated MPNs are broadly similar in terms of the quantity, frequency and spectrum of co-occurring mutations and therefore observed biological differences are likely to not be heavily influenced by the nature and quantity of co-mutated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Haris NL, et al.,eds (2008) WHO classification of tumours of haemopoeitic and lymphoid tissues. 4th edn Lyon, France: International Agency for Research on Cancer Press

  2. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, Garcon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148. doi:10.1038/nature03546

    Article  CAS  PubMed  Google Scholar 

  3. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790. doi:10.1056/NEJMoa051113

    Article  CAS  PubMed  Google Scholar 

  4. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, Avezov E, Li J, Kollmann K, Kent DG, Aziz A, Godfrey AL, Hinton J, Martincorena I, Van Loo P, Jones AV, Guglielmelli P, Tarpey P, Harding HP, Fitzpatrick JD, Goudie CT, Ortmann CA, Loughran SJ, Raine K, Jones DR, Butler AP, Teague JW, O'Meara S, McLaren S, Bianchi M, Silber Y, Dimitropoulou D, Bloxham D, Mudie L, Maddison M, Robinson B, Keohane C, Maclean C, Hill K, Orchard K, Tauro S, Du MQ, Greaves M, Bowen D, Huntly BJ, Harrison CN, Cross NC, Ron D, Vannucchi AM, Papaemmanuil E, Campbell PJ, Green AR (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 369(25):2391–2405. doi:10.1056/NEJMoa1312542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, Them NC, Berg T, Gisslinger B, Pietra D, Chen D, Vladimer GI, Bagienski K, Milanesi C, Casetti IC, Sant'Antonio E, Ferretti V, Elena C, Schischlik F, Cleary C, Six M, Schalling M, Schonegger A, Bock C, Malcovati L, Pascutto C, Superti-Furga G, Cazzola M, Kralovics R (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369(25):2379–2390. doi:10.1056/NEJMoa1311347

    Article  CAS  PubMed  Google Scholar 

  6. Pietra D, Rumi E, Ferretti VV, Di Buduo CA, Milanesi C, Cavalloni C, Sant'Antonio E, Abbonante V, Moccia F, Casetti IC, Bellini M, Renna MC, Roncoroni E, Fugazza E, Astori C, Boveri E, Rosti V, Barosi G, Balduini A, Cazzola M (2016) Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia 30(2):431–438. doi:10.1038/leu.2015.277

    Article  CAS  PubMed  Google Scholar 

  7. Cazzola M, Kralovics R (2014) From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood 123(24):3714–3719. doi:10.1182/blood-2014-03-530865

    Article  CAS  PubMed  Google Scholar 

  8. Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, Them NC, Berg T, Elena C, Casetti IC, Milanesi C, Sant'antonio E, Bellini M, Fugazza E, Renna MC, Boveri E, Astori C, Pascutto C, Kralovics R, Cazzola M, Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative I (2014) JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 123(10):1544–1551. doi:10.1182/blood-2013-11-539098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen CC, Gau JP, Chou HJ, You JY, Huang CE, Chen YY, Lung J, Chou YS, Leu YW, Lu CH, Lee KD, Tsai YH (2014) Frequencies, clinical characteristics, and outcome of somatic CALR mutations in JAK2-unmutated essential thrombocythemia. Ann Hematol 93(12):2029–2036. doi:10.1007/s00277-014-2151-8

    Article  CAS  PubMed  Google Scholar 

  10. Rotunno G, Mannarelli C, Guglielmelli P, Pacilli A, Pancrazzi A, Pieri L, Fanelli T, Bosi A, Vannucchi AM, Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative I (2014) Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 123(10):1552–1555. doi:10.1182/blood-2013-11-538983

    Article  CAS  PubMed  Google Scholar 

  11. Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH, Maffioli M, Caramazza D, Passamonti F, Pardanani A (2014) CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 28(7):1472–1477. doi:10.1038/leu.2014.3

    Article  CAS  PubMed  Google Scholar 

  12. Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martinez-Trillos A, Casetti I, Colomer D, Pieri L, Pratcorona M, Rotunno G, Sant'Antonio E, Bellini M, Cavalloni C, Mannarelli C, Milanesi C, Boveri E, Ferretti V, Astori C, Rosti V, Cervantes F, Barosi G, Vannucchi AM, Cazzola M, Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative I (2014) Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 124(7):1062–1069. doi:10.1182/blood-2014-05-578435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA (2011) New mutations and pathogenesis of myeloproliferative neoplasms. Blood 118(7):1723–1735. doi:10.1182/blood-2011-02-292102

    Article  CAS  PubMed  Google Scholar 

  14. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, Girsberger S, Lehmann T, Passweg J, Stern M, Beisel C, Kralovics R, Skoda RC (2014) Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 123(14):2220–2228. doi:10.1182/blood-2013-11-537167

    Article  CAS  PubMed  Google Scholar 

  15. Tenedini E, Bernardis I, Artusi V, Artuso L, Roncaglia E, Guglielmelli P, Pieri L, Bogani C, Biamonte F, Rotunno G, Mannarelli C, Bianchi E, Pancrazzi A, Fanelli T, Malagoli Tagliazucchi G, Ferrari S, Manfredini R, Vannucchi AM, Tagliafico E, investigators A (2014) Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms. Leukemia 28(5):1052–1059. doi:10.1038/leu.2013.302

    Article  CAS  PubMed  Google Scholar 

  16. Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C, Mannarelli C, Belachew AA, Pancrazzi A, Wassie EA, Ketterling RP, Hanson CA, Pardanani A, Vannucchi AM (2014) CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia 28(7):1494–1500. doi:10.1038/leu.2014.57

    Article  CAS  PubMed  Google Scholar 

  17. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, Finke C, Score J, Gangat N, Mannarelli C, Ketterling RP, Rotunno G, Knudson RA, Susini MC, Laborde RR, Spolverini A, Pancrazzi A, Pieri L, Manfredini R, Tagliafico E, Zini R, Jones A, Zoi K, Reiter A, Duncombe A, Pietra D, Rumi E, Cervantes F, Barosi G, Cazzola M, Cross NC, Tefferi A (2013) Mutations and prognosis in primary myelofibrosis. Leukemia 27(9):1861–1869. doi:10.1038/leu.2013.119

    Article  CAS  PubMed  Google Scholar 

  18. Tefferi A, Lasho TA, Guglielmelli P, Finke CM, Rotunno G, Elala Y, Pacilli A, Hanson CA, Pancrazzi A, Ketterling RP, Mannarelli C, Barraco D, Fanelli T, Pardanani A, Gangat N, Vannucchi AM (2016) Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood advances 1:1

    Article  Google Scholar 

  19. Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A, Biamonte F, Pardanani A, Zoi K, Reiter A, Duncombe A, Fanelli T, Pietra D, Rumi E, Finke C, Gangat N, Ketterling RP, Knudson RA, Hanson CA, Bosi A, Pereira A, Manfredini R, Cervantes F, Barosi G, Cazzola M, Cross NC, Vannucchi AM, Tefferi A (2014) The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia 28(9):1804–1810. doi:10.1038/leu.2014.76

    Article  CAS  PubMed  Google Scholar 

  20. Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, Mizukami Y, Kan S, Shirane S, Edahiro Y, Sunami Y, Ohsaka A, Komatsu N (2016) Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood 127(10):1307–1316. doi:10.1182/blood-2015-09-671172

    Article  CAS  PubMed  Google Scholar 

  21. Vannucchi AM, Pieri L, Guglielmelli P (2011) JAK2 allele burden in the myeloproliferative neoplasms: effects on phenotype, prognosis and change with treatment. Ther Adv Hematol 2(1):21–32. doi:10.1177/2040620710394474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tefferi A, Wassie EA, Guglielmelli P, Gangat N, Belachew AA, Lasho TL, Finke C, Ketterling RP, Hanson CA, Pardanani A, Wolanskyj AP, Maffioli M, Casalone R, Pacilli A, Vannucchi AM, Passamonti F (2014) Type 1 versus type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol 89(8):E121–E124. doi:10.1002/ajh.23743

    Article  CAS  PubMed  Google Scholar 

  23. Tefferi A, Lasho TL, Tischer A, Wassie EA, Finke CM, Belachew AA, Ketterling RP, Hanson CA, Pardanani AD (2014) The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood 124(15):2465–2466. doi:10.1182/blood-2014-07-588426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guglielmelli P, Rotunno G, Fanelli T, Pacilli A, Brogi G, Calabresi L, Pancrazzi A, Vannucchi AM (2015) Validation of the differential prognostic impact of type 1/type 1-like versus type 2/type 2-like CALR mutations in myelofibrosis. Blood Cancer J 5:e360. doi:10.1038/bcj.2015.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cabagnols X, Defour JP, Ugo V, Ianotto JC, Mossuz P, Mondet J, Girodon F, Alexandre JH, Mansier O, Viallard JF, Lippert E, Murati A, Mozziconacci MJ, Saussoy P, Vekemans MC, Knoops L, Pasquier F, Ribrag V, Solary E, Plo I, Constantinescu SN, Casadevall N, Vainchenker W, Marzac C, Bluteau O (2015) Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution. Leukemia 29(1):249–252. doi:10.1038/leu.2014.270

    Article  CAS  PubMed  Google Scholar 

  26. Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A, O'Keefe C, Rogers HJ, Sekeres MA, Maciejewski JP, Tiu RV (2012) SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 26(3):542–545. doi:10.1038/leu.2011.232

    Article  CAS  PubMed  Google Scholar 

  27. Jeromin S, Haferlach T, Weissmann S, Meggendorfer M, Eder C, Nadarajah N, Alpermann T, Kohlmann A, Kern W, Haferlach C, Schnittger S (2015) Refractory anemia with ring sideroblasts and marked thrombocytosis cases harbor mutations in SF3B1 or other spliceosome genes accompanied by JAK2V617F and ASXL1 mutations. Haematologica 100(4):e125–e127. doi:10.3324/haematol.2014.119032

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lasho TL, Finke CM, Hanson CA, Jimma T, Knudson RA, Ketterling RP, Pardanani A, Tefferi A (2012) SF3B1 mutations in primary myelofibrosis: clinical, histopathology and genetic correlates among 155 patients. Leukemia 26(5):1135–1137. doi:10.1038/leu.2011.320

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishu Agarwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

ESM 2

(DOCX 20 kb)

ESM 3

(DOCX 20 kb)

ESM 4

(DOCX 22 kb)

ESM 5

(DOCX 26 kb)

ESM 6

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R., Blombery, P., McBean, M. et al. Clinicopathological differences exist between CALR- and JAK2-mutated myeloproliferative neoplasms despite a similar molecular landscape: data from targeted next-generation sequencing in the diagnostic laboratory. Ann Hematol 96, 725–732 (2017). https://doi.org/10.1007/s00277-017-2937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-017-2937-6

Keywords

Navigation