Skip to main content

Advertisement

Log in

Preclinical studies of the proteasome inhibitor bortezomib in malignant pleural mesothelioma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Malignant pleural mesothelioma (MPM) is a highly lethal neoplasm that is resistant to chemotherapy. Bortezomib is an FDA-approved proteasome inhibitor that is currently under clinical investigation in multiple neoplasms but has not been studied extensively in MPM. In this report, we determine the biological and molecular response of cultured MPM cells to bortezomib alone and in combination with cisplatin or pemetrexed. We used four MPM cell lines (MS589, H28, H2052, JMN), a normal mesothelial cell line (HM3), and a lung cancer cell line (H23) in survival studies utilizing bortezomib, cisplatin, and pemetrexed alone and in combination by administering concurrently or by varying the order of administration. We determined the effect of bortezomib on the cell cycle, apoptosis, and on the expression of cell cycle proteins p21/WAF1 and p27/KIP1 and on apoptosis-related proteins IAP-1, IAP-2, survivin, and XIAP. Bortezomib was highly cytotoxic to MPM cells and induced both G2/M and G1/S cell cycle arrest. Apoptosis increased in a concentration- and time-dependent manner in 3 of 4 MPM cell lines. Bortezomib stabilized or increased protein levels of p21/WAF1 and IAP-1 and to a lesser degree p27/KIP1, IAP-2, XIAP, and survivin. In combination studies with cisplatin, bortezomib was generally synergistic at high concentrations and antagonistic at low concentrations. Bortezomib increased the cytotoxicity of cisplatin and pemetrexed in a concentration-dependent manner when administered prior to either. Bortezomib may improve outcome in MPM patients alone or in combination with standard chemotherapy but the order of administration is likely to be important. This study justifies further evaluation of bortezomib in MPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pass H (2001) Malignant pleural mesothelioma: Surgical roles and novel therapies. Clin Lung Cancer 3(2):102–117

    Article  PubMed  CAS  Google Scholar 

  2. Sugarbaker DJ, Liptay MJ (1996) Therapeutic approaches in malignant mesothelioma. In: Aisner J, Arriagada R, Green MR, Martini N, Perry MC (eds) Comprehensive textbook of thoracic oncology. Williams and Wilkins, Baltimore, pp 786–798

    Google Scholar 

  3. Chang MY, Sugarbaker DJ (2004) Extrapleural pneumonectomy for diffuse malignant pleural mesothelioma: techniques and complications. Thoracic Surg Clin 14(4):523–530

    Article  Google Scholar 

  4. Richards WG, Zellos L, Bueno R et al (2006) Phase I to II study of pleurectomy/decortication and intraoperative intracavitary hyperthermic cisplatin lavage for mesothelioma. J Clin Oncol 24(10):1561–1567

    Article  PubMed  CAS  Google Scholar 

  5. Sugarbaker DJ, Flores RM, Jaklitsch MT et al (1999) Resection margins, extrapleural nodal status, and cell type determine postoperative long-term survival in trimodality therapy of malignant pleural mesothelioma: results in 183 patients. J Thorac Cardiovasc Surg 117(1):54–65

    Article  PubMed  CAS  Google Scholar 

  6. Sugarbaker DJ, Garcia JP, Richards WG et al (1996) Extrapleural pneumonectomy in the multimodality therapy of malignant pleural mesothelioma. Results in 120 consecutive patients. Ann Surg 224(3):288–294

    Article  PubMed  CAS  Google Scholar 

  7. Goudar RK (2005) New therapeutic options for mesothelioma. Curr Oncol Rep 7(4):260–265

    Article  PubMed  CAS  Google Scholar 

  8. Krug LM (2005) An overview of chemotherapy for mesothelioma. Hematol Oncol Clin North Am 19(6):1117–1136

    Article  PubMed  Google Scholar 

  9. Sugarbaker DJ, Norberto JJ, Bueno R (1997) Current therapy for mesothelioma. Cancer Control 4:326–334

    PubMed  Google Scholar 

  10. Dowell JE, Kindler HL (2005) Antiangiogenic therapies for mesothelioma. Hematol Oncol Clin North Am 19(6):1137–1145

    Article  PubMed  Google Scholar 

  11. Govindan R, Kratzke RA, Herndon JE et al (2005) Gefitinib in patients with malignant mesothelioma: a phase II study by the Cancer and Leukemia Group B. Clin Cancer Res 11(6):2300–2304

    Article  PubMed  CAS  Google Scholar 

  12. Vogelzang NJ, Rusthoven JJ, Symanowski J et al (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21:2636–2644

    Article  PubMed  CAS  Google Scholar 

  13. Jagadeeswaran R, Ma PC, Seiwert TY et al (2006) Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res 66(1):352–361

    Article  PubMed  CAS  Google Scholar 

  14. Sterman DH (2005) Gene therapy for malignant pleural mesothelioma. Hematol Oncol Clin North Am 19(6):1147–1173

    Article  PubMed  Google Scholar 

  15. Adams J (2004) The proteosome: a suitable antineoplastic target. Nat Rev Cancer 4:349–360

    Article  PubMed  CAS  Google Scholar 

  16. Salvesen GS, Duckett CS (2002) IAP proteins: Blocking the road to death’s door. Nat Rev Mol Cell Biol 3:401–410

    Article  PubMed  CAS  Google Scholar 

  17. Deveraux QL, Reed JC (1999) IAP family proteins-suppressors of apoptosis. Genes Dev 13:239–252

    PubMed  CAS  Google Scholar 

  18. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17(25):3247–3259

    Article  PubMed  Google Scholar 

  19. de Graaf AO, de Witte T, Jansen JH (2004) Inhibitor of apoptosis proteins: new therapeutic targets in hematological cancer? Leukemia 18:1751–1759

    Article  PubMed  CAS  Google Scholar 

  20. Liston P, Fong WG, Korneluk RG (2003) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22:8568–8580

    Article  PubMed  CAS  Google Scholar 

  21. Plenchette S, Cathelin S, Rebe C et al (2004) Translocation of the inhibitor of apoptosis protein c-IAP1 from the nucleus to the Golgi in hematopoietic cells undergoing differentiation: a nuclear export signal-mediated event. Blood 104(7):2035–2043

    Article  PubMed  CAS  Google Scholar 

  22. Samuel T, Okada K, Hyer M, Welsh K, Zapata JM, Reed JC (2005) cIAP1 localizes to the nuclear compartment and modulates the cell cycle. Cancer Res 65:210–218

    PubMed  CAS  Google Scholar 

  23. Vischioni B, van der Valk P, Ing SWS, Kruyt FAE, Rodriguez JA, Giaccone G (2006) Expression and localization of inhibitor of apoptosis proteins in normal human tissues. Hum Pathol 37:78–86

    Article  PubMed  CAS  Google Scholar 

  24. Gordon GJ, Chen C-J, Mukhopadhyay NK et al (2002) Inhibitor of apoptosis protein-1 promotes tumor cell survival in mesothelioma. Carcinogenesis 23:1017–10244

    Article  PubMed  CAS  Google Scholar 

  25. Gordon GJ, Mani M, Mukhopadhyay L et al (2007) Expression patterns of inhibitor of apoptosis proteins in malignant pleural mesothelioma. J Pathol 211:447–454

    Article  PubMed  CAS  Google Scholar 

  26. Falleni M, Pellegrini C, Marchetti A et al (2005) Quantitative evaluation of the apoptosis regulating genes Survivin, Bcl-2 and Bax in inflammatory and malignant pleural lesions. Lung Cancer 48(2):211–216

    Article  PubMed  Google Scholar 

  27. Xia C, Xu Z, Yuan X et al (2002) Induction of apoptosis in mesothelioma cells by antisurvivin oligonucleotides. Mol Cancer Ther 1(9):687–694

    PubMed  CAS  Google Scholar 

  28. Wu M, Yuan S, Szporn AH, Gan L, Shtilbans V, Burstein DE (2005) Immunocytochemical detection of XIAP in body cavity effusions and washes. Mod Pathol 18(12):1618–1622

    PubMed  CAS  Google Scholar 

  29. Gordon GJ, Mani M, Mukhopadhyay L et al (2007) Inhibitor of apoptosis proteins are regulated by tumor necrosis factor-alpha in malignant pleural mesothelioma. J Pathol 211:439–446

    Article  PubMed  CAS  Google Scholar 

  30. Behbehani AM, Hunter WJ, Chapman AL, Lin F (1982) Studies of a human mesothelioma. Hum Pathol 13:862–866

    Article  PubMed  CAS  Google Scholar 

  31. Demetri GD, Zenzie BW, Rheinwald JG, Griffin JD (1989) Expression of colony-stimulating factor genes by normal human mesothelial cells and human malignant mesothelioma cells lines in vitro. Blood 74(3):940–946

    PubMed  CAS  Google Scholar 

  32. Connell ND, Rheinwald JG (1983) Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell 34:245–253

    Article  PubMed  CAS  Google Scholar 

  33. Rheinwald JG, Hahn WC, Ramsey MR et al (2002) A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol Cell Biol 22:5157–5172

    Article  PubMed  CAS  Google Scholar 

  34. Chou T-C, Talalay P (1983) Analysis of combined drug effects: a new look at a very old problem. Trends Pharmacol Sci 4:450–454

    Article  CAS  Google Scholar 

  35. Mortenson MM, Schlieman MG, Virudachalam S, Bold RJ (2004) Effects of the proteasome inhibitor bortezomib alone and in combination with chemotherapy in the A549 non-small-cell lung cancer cell line. Cancer Chemother Pharmacol 54(4):343–353

    Article  PubMed  CAS  Google Scholar 

  36. Scagliotti G (2006) Proteasome inhibitors in lung cancer. Crit Rev Oncol Hematol 58(3):177–189

    Article  PubMed  Google Scholar 

  37. Sun X, Gulyas M, Hjerpe A, Dobra K (2006) Proteasome inhibitor PSI induces apoptosis in human mesothelioma cells. Cancer Lett 232(2):161–169

    Article  PubMed  CAS  Google Scholar 

  38. Borczuk AC, Cappellini GC, Kim HK, Hesdorffer M, Taub RN, Powell CA (2006) Molecular profiling of malignant peritoneal mesothelioma identifies the ubiquitin-proteasome pathway as a therapeutic target in poor prognosis tumors. Oncogene (in press)

  39. McManus DC, Lefebvre CA, Cherton-Horvat G, et al (2004) Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23(49):8105–8117

    Article  PubMed  CAS  Google Scholar 

  40. Dai Y, Rahmani M, Grant S (2003) Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene 22(46):7108–7122

    Article  PubMed  CAS  Google Scholar 

  41. Kashkar H, Deggerich A, Seeger JM, et al (2006) NF-kB independent down-regulation of XIAP by bortezomib sensitizes HL B-cells against cytotoxic drugs. Blood

  42. Paydas S (2006) Can survivin expression predict the response to bortezomib in cases with mantle cell lymphoma? Leuk Lymphoma 47(11):2412–2413

    Article  PubMed  Google Scholar 

  43. Takigawa N, Vaziri SA, Grabowski DR et al (2006) Proteasome inhibition with bortezomib enhances activity of topoisomerase I-targeting drugs by NF-kappaB-independent mechanisms. Anticancer Res 26(3A):1869–1876

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly funded by grants to G.J.G., R.B., and B.Y.Y. from The International Mesothelioma Program (http://www.impmeso.org), to G.J.G. from the Mesothelioma Applied Research Foundation (MARF), to R.B. from the NCI (CA120528 and CA100315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin J. Gordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, G.J., Mani, M., Maulik, G. et al. Preclinical studies of the proteasome inhibitor bortezomib in malignant pleural mesothelioma. Cancer Chemother Pharmacol 61, 549–558 (2008). https://doi.org/10.1007/s00280-007-0500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0500-1

Keywords

Navigation