Skip to main content
Log in

Caffeine markedly sensitizes human mesothelioma cell lines to pemetrexed

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Pemetrexed is a new generation antifolate approved for the treatment of mesothelioma and non-small cell lung cancer. Caffeine is known to augment radiation or chemotherapeutic drug-induced cell killing. The current study addresses the impact of caffeine on the activity of pemetrexed in mesothelioma cell lines. Caffeine enhanced pemetrexed activity in all four mesothelioma cell lines tested (H2052, H2373, H28 and MSTO-211H). Caffeine sensitized H2052 cells in a dose- and schedule-dependent manner, and was associated with a markedly decreased clonogenic survival. Caffeine sensitization occurred only in cells subjected to pulse, but not continuous, exposure to pemetrexed. Similar pemetrexed sensitization was also observed with the clinically better tolerated caffeine analog, theobromine. Pemetrexed sensitization by caffeine was associated with an increase in pemetrexed-induced phosphorylation of ataxia-telangiectasia-mutated (ATM) and Chk1. These data indicate that caffeine and its analog, theobromine, may be a useful approach to enhance pemetrexed-based chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL, Shackelford KA, Mendelsohn LG, Soose DJ, Patel VF, Andis SL, Bewley JR, Rayl EA, Moroson BA, Beardsley GP, Kohler W, Ratnam M, Schultz RM (1997) LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 57:1116–1123

    PubMed  CAS  Google Scholar 

  2. Zhao R, Zhang S, Hanscom M, Chattopadhyay S, Goldman ID (2005) Loss of reduced folate carrier function and folate depletion result in enhanced pemetrexed inhibition of purine synthesis. Clin Cancer Res 11:1294–1301

    PubMed  CAS  Google Scholar 

  3. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, Gatzemeier U, Boyer M, Emri S, Manegold C, Niyikiza C, Paoletti P (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21:2636–2644

    Article  PubMed  CAS  Google Scholar 

  4. Hanna N, Shepherd FA, Fossella FV, Pereira JR, De Marinis F, Von Pawel J, Gatzemeier U, Tsao TC, Pless M, Muller T, Lim HL, Desch C, Szondy K, Gervais R, Shaharyar, Manegold C, Paul S, Paoletti P, Einhorn L, Bunn PA Jr (2004) Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 22:1589–1597

    Article  PubMed  CAS  Google Scholar 

  5. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59:4375–4382

    PubMed  CAS  Google Scholar 

  6. Hall-Jackson CA, Cross DA, Morrice N, Smythe C (1999) ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene 18:6707–6713

    Article  PubMed  CAS  Google Scholar 

  7. Blasina A, Price BD, Turenne GA, McGowan CH (1999) Caffeine inhibits the checkpoint kinase ATM. Curr Biol 9:1135–1138

    Article  PubMed  CAS  Google Scholar 

  8. Zhou BB, Chaturvedi P, Spring K, Scott SP, Johanson RA, Mishra R, Mattern MR, Winkler JD, Khanna KK (2000) Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem 275:10342–10348

    Article  PubMed  CAS  Google Scholar 

  9. Asaad NA, Zeng ZC, Guan J, Thacker J, Iliakis G (2000) Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants. Oncogene 19:5788–5800

    Article  PubMed  CAS  Google Scholar 

  10. Wang H, Boecker W, Wang H, Wang X, Guan J, Thompson LH, Nickoloff JA, Iliakis G (2004) Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks. Oncogene 23:824–834

    Article  PubMed  CAS  Google Scholar 

  11. Golding SE, Rosenberg E, Khalil A, McEwen A, Holmes M, Neill S, Povirk LF, Valerie K (2004) Double strand break repair by homologous recombination is regulated by cell cycle-independent signaling via ATM in human glioma cells. J Biol Chem 279:15402–15410

    Article  PubMed  CAS  Google Scholar 

  12. Byfield JE, Murnane J, Ward JF, Calabro-Jones P, Lynch M, Kulhanian F (1981) Mice, men, mustard and methylated xanthines: the potential role of caffeine and related drugs in the sensitization of human tumours to alkylating agents. Br J Cancer 43:669–683

    PubMed  CAS  Google Scholar 

  13. Fingert HJ, Chang JD, Pardee AB (1986) Cytotoxic, cell cycle, and chromosomal effects of methylxanthines in human tumor cells treated with alkylating agents. Cancer Res 46:2463–2467

    PubMed  CAS  Google Scholar 

  14. Janss AJ, Levow C, Bernhard EJ, Muschel RJ, McKenna WG, Sutton L, Phillips PC (1998) Caffeine and staurosporine enhance the cytotoxicity of cisplatin and camptothecin in human brain tumor cell lines. Exp Cell Res 243:29–38

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi M, Yanoma S, Yamamoto Y, Rino Y, Amano T, Imada T (1998) Combined effect of CDDP and caffeine against human gastric cell line in vivo. Anticancer Res 18:4399–4401

    PubMed  CAS  Google Scholar 

  16. Boike GM, Petru E, Sevin BU, Averette HE, Chou TC, Penalver M, Donato D, Schiano M, Hilsenbeck SG, Perras J (1990) Chemical enhancement of cisplatin cytotoxicity in a human ovarian and cervical cancer cell line. Gynecol Oncol 38:315–322

    Article  PubMed  CAS  Google Scholar 

  17. Deplanque G, Ceraline J, Lapouge G, Dufour P, Bergerat JP, Klein-Soyer C (2004) Conflicting effects of caffeine on apoptosis and clonogenic survival of human K1 thyroid carcinoma cell lines with different p53 status after exposure to cisplatin or UVc irradiation. Biochem Biophys Res Commun 314:1100–1106

    Article  PubMed  CAS  Google Scholar 

  18. Traganos F, Kapuscinski J, Darzynkiewicz Z (1991) Caffeine modulates the effects of DNA-intercalating drugs in vitro: a flow cytometric and spectrophotometric analysis of caffeine interaction with novantrone, doxorubicin, ellipticine, and the doxorubicin analogue AD198. Cancer Res 51:3682–3689

    PubMed  CAS  Google Scholar 

  19. Traganos F, Kapuscinski J, Gong J, Ardelt B, Darzynkiewicz RJ, Darzynkiewicz Z (1993) Caffeine prevents apoptosis and cell cycle effects induced by camptothecin or topotecan in HL-60 cells. Cancer Res 53:4613–4618

    PubMed  CAS  Google Scholar 

  20. Cohen MH, Schoenfeld D, Wolter J (1980) Randomized trial of chlorpromazine, caffeine, and methyl-CCNU in disseminated melanoma. Cancer Treat Rep 64:151–153

    PubMed  CAS  Google Scholar 

  21. Dougherty JB, Kelsen D, Kemeny N, Magill G, Botet J, Niedzwiecki D (1989) Advanced pancreatic cancer: a phase I-II trial of cisplatin, high-dose cytarabine, and caffeine. J Natl Cancer Inst 81:1735–1738

    Article  PubMed  CAS  Google Scholar 

  22. Al Sukhun S, Zalupski MM, Ben Josef E, Vaitkevicius VK, Philip PA, Soulen R, Weaver D, Adsay V, Heilbrun LK, Levin K, Forman JD, Shields AF (2003) Chemoradiotherapy in the treatment of regional pancreatic carcinoma: a phase II study. Am J Clin Oncol 26:543–549

    Article  PubMed  CAS  Google Scholar 

  23. Ahmed S, Vaitkevicius VK, Zalupski MM, Du W, Arlauskas P, Gordon C, Kellogg C, Shields AF (2000) Cisplatin, cytarabine, caffeine, and continuously infused 5-fluorouracil (PACE) in the treatment of advanced pancreatic carcinoma: a phase II study. Am J Clin Oncol 23:420–424

    Article  PubMed  CAS  Google Scholar 

  24. Tsuchiya H, Tomita K, Mori Y, Asada N, Morinaga T, Kitano S, Yamamoto N (1998) Caffeine-assisted chemotherapy and minimized tumor excision for nonmetastatic osteosarcoma. Anticancer Res 18:657–666

    PubMed  CAS  Google Scholar 

  25. Tsuchiya H, Tomita K, Yamamoto N, Mori Y, Asada N (1998) Caffeine-potentiated chemotherapy and conservative surgery for high-grade soft-tissue sarcoma. Anticancer Res 18:3651–3656

    PubMed  CAS  Google Scholar 

  26. Hayashi M, Tsuchiya H, Yamamoto N, Karita M, Shirai T, Nishida H, Takeuchi A, Tomita K (2005) Caffeine-potentiated chemotherapy for metastatic carcinoma and lymphoma of bone and soft tissue. Anticancer Res 25:2399–2405

    PubMed  Google Scholar 

  27. Latz JE, Chaudhary A, Ghosh A, Johnson RD (2006) Population pharmacokinetic analysis of ten phase II clinical trials of pemetrexed in cancer patients. Cancer Chemother Pharmacol 57:401–411

    Article  PubMed  Google Scholar 

  28. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  PubMed  CAS  Google Scholar 

  29. Usmani OS, Belvisi MG, Patel HJ, Crispino N, Birrell MA, Korbonits M, Korbonits D, Barnes PJ (2005) Theobromine inhibits sensory nerve activation and cough. FASEB J 19:231–233

    PubMed  CAS  Google Scholar 

  30. Kawahara M, Kagiyama H, Kanazawa Y, Tsuchiya H, Tomita K, Yokogawa K, Miyamoto K (2004) Rapid determination method of caffeine and application to monitoring of caffeine-assisted chemotherapy. Biopharm Drug Dispos 25:61–67

    Article  PubMed  CAS  Google Scholar 

  31. Manfredi JJ, Dong J, Liu WJ, Resnick-Silverman L, Qiao R, Chahinian P, Saric M, Gibbs AR, Phillips JI, Murray J, Axten CW, Nolan RP, Aaronson SA (2005) Evidence against a role for SV40 in human mesothelioma. Cancer Res 65:2602–2609

    Article  PubMed  CAS  Google Scholar 

  32. Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D, Tang W, Friend S (1995) Differential sensitivity of p53(−) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res 55:1643–1648

    PubMed  CAS  Google Scholar 

  33. Russell KJ, Wiens LW, Demers GW, Galloway DA, Plon SE, Groudine M (1995) Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint-competent cells. Cancer Res 55:1639–1642

    PubMed  CAS  Google Scholar 

  34. Yao SL, Akhtar AJ, McKenna KA, Bedi GC, Sidransky D, Mabry M, Ravi R, Collector MI, Jones RJ, Sharkis SJ, Fuchs EJ, Bedi A (1996) Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nat Med 2:1140–1143

    Article  PubMed  CAS  Google Scholar 

  35. Lu X, Errington J, Curtin NJ, Lunec J, Newell DR (2001) The impact of p53 status on cellular sensitivity to antifolate drugs. Clin Cancer Res 7:2114–2123

    PubMed  CAS  Google Scholar 

  36. Longley DB, Boyer J, Allen WL, Latif T, Ferguson PR, Maxwell PJ, McDermott U, Lynch M, Harkin DP, Johnston PG (2002) The role of thymidylate synthase induction in modulating p53-regulated gene expression in response to 5-fluorouracil and antifolates. Cancer Res 62:2644–2649

    PubMed  CAS  Google Scholar 

  37. Cortez D (2003) Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J Biol Chem 278:37139–37145

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Cancer Institute (CA-82621) and the Mesothelioma Applied Research Foundation (Alvin Rehbeck Memorial Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongbao Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, S.H., Goldman, I.D. & Zhao, R. Caffeine markedly sensitizes human mesothelioma cell lines to pemetrexed. Cancer Chemother Pharmacol 61, 819–827 (2008). https://doi.org/10.1007/s00280-007-0539-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0539-z

Keywords

Navigation