Skip to main content

Advertisement

Log in

Inhibition of CD44 expression in hepatocellular carcinoma cells enhances apoptosis, chemosensitivity, and reduces tumorigenesis and invasion

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

CD44 is overexpressed in various tumors including hepatocellular carcinoma (HCC). The purpose of this study was to examine the effects of CD44 antisense oligonucleotide (ASO) alone or combination with doxorubicin on HCC cells in vitro.

Methods

Cytotoxicity was measured by use of a cell viability assay in HCC cell line SNU-449. Tumorigenesis and invasion were accessed by colony formation, growth in soft agar and ECMatrix invasion assay. Apoptosis and necrosis were evaluated by using double staining with Hoechst 33342 and propidium iodide. Protein expression and mRNA level were detected by Western blot and RT-PCR.

Results

We have designed novel CD44 ASO, which can effectively down-regulate CD44 expression in SNU-449. Colony formation, growth in soft agar and invasion were significantly impaired after CD44 ASO treatment in SNU-499. In company with CD44 down-regulated by CD44 ASO, MDR-1 and Bcl-2 expression were also greatly reduced. CD44 ASO also increased chemosensitivity to doxorubicin significantly, lowered IC50 by one order of magnitude. Apoptosis and necrosis were also induced by CD44 ASO alone or in combination treatment with doxorubicin.

Conclusions

Inhibition of CD44 expression by CD44 ASO significantly induced apoptosis, decreased tumorigenesis and invasion, and increased chemosensitivity. Thus, CD44 ASO is potentially a therapy that is worth investigating in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Llovet JM, Beaugrand M (2003) Hepatocellular carcinoma: present status and future prospects. J Hepatol 38:S136–S149

    Article  PubMed  Google Scholar 

  2. Bruix J, Boix L, Sala M, Llovet JM (2004) Focus on hepatocellular carcinoma. Cancer Cell 5:215–219

    Article  PubMed  CAS  Google Scholar 

  3. Greten TF, Papendorf F, Bleck JS, Kirchhoff T, Wohlberedt T, Kubicka S et al (2005) Survival rate in patients with hepatocellular carcinoma: a retrospective analysis of 389 patients. Br J Cancer 92:1862–1868

    Article  PubMed  CAS  Google Scholar 

  4. Avila MA, Berasain C, Sangro B, Prieto J (2006) New therapies for hepatocellular carcinoma. Oncogene 25:3866–3884

    Article  PubMed  CAS  Google Scholar 

  5. Greten TF, Manns MP, Korangy F (2006) Immunotherapy of hepatocellular carcinoma. J Hepatol 45:868–878

    Article  PubMed  CAS  Google Scholar 

  6. Abou-Alfa GK (2006) Hepatocellular carcinoma: molecular biology and therapy. Semin Oncol 33:S79–S83

    Article  PubMed  CAS  Google Scholar 

  7. Zhu AX (2007) Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer 112:250–259

    Article  CAS  Google Scholar 

  8. Bendall LJ, Nilsson SK, Khan NI, James A, Bonnet C, Lock RB et al (2004) Role of CD44 variant exon 6 in acute lymphoblastic leukemia: association with altered bone marrow localisation and increased tumour burden. Leukemia 18:1308–1311

    Article  PubMed  CAS  Google Scholar 

  9. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45

    Article  PubMed  CAS  Google Scholar 

  10. Cooper DL, Dougherty GJ (1995) To metastasize or not? Selection of CD44 splice sites. Nat Med 1:635–637

    Article  PubMed  CAS  Google Scholar 

  11. Liu J, Jiang G (2006) CD44 and hematologic malignancies. Cell Mol Immunol 3:359–365

    PubMed  CAS  Google Scholar 

  12. Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y (2002) CD44 in cancer. Crit Rev Clin Lab Sci 39:527–579

    Article  PubMed  CAS  Google Scholar 

  13. Jothy S (2003) CD44 and its partners in metastasis. Clin Exp Metastasis 20:195–201

    Article  PubMed  CAS  Google Scholar 

  14. Seiter S, Schadendorf D, Herrmann K, Schneider M, Rosel M, Arch R et al (1996) Expression of CD44 variant isoforms in malignant melanoma. Clin Cancer Res 2:447–456

    PubMed  CAS  Google Scholar 

  15. Akisik E, Bavbek S, Dalay N (2002) CD44 variant exons in leukemia and lymphoma. Pathol Oncol Res 8:36–40

    Article  PubMed  CAS  Google Scholar 

  16. Endo K, Terada T (2000) Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J Hepatol 32:78–84

    Article  PubMed  CAS  Google Scholar 

  17. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    Article  PubMed  CAS  Google Scholar 

  18. Song G, Liao X, Zhou L, Wu L, Feng Y, Han ZC (2004) HI44a, an anti-CD44 monoclonal antibody, induces differentiation and apoptosis of human acute myeloid leukemia cells. Leuk Res 28:1089–1096

    Article  PubMed  CAS  Google Scholar 

  19. Gadhoum Z, Delaunay J, Maquarre E, Durand L, Lancereaux V, Qi J et al (2004) The effect of anti-CD44 monoclonal antibodies on differentiation and proliferation of human acute myeloid leukemia cells. Leuk Lymphoma 45:1501–1510

    Article  PubMed  CAS  Google Scholar 

  20. Charrad RS, Gadhoum Z, Qi J, Glachant A, Allouche M, Jasmin C et al (2002) Effects of anti-CD44 monoclonal antibodies on differentiation and apoptosis of human myeloid leukemia cell lines. Blood 99:290–299

    Article  PubMed  CAS  Google Scholar 

  21. Tamm I, Dörken B, Hartmann G (2001) Antisense therapy in oncology: new hope for an old idea? Lancet 358:489–497

    Article  PubMed  CAS  Google Scholar 

  22. Spitaler M, Wiesenhofer B, Biedermann V, Seppi T, Zimmermann J, Grunicke H et al (1999) The involvement of protein kinase C isoenzymes alpha, epsilon and zeta in the sensitivity to antitumor treatment and apoptosis induction. Anticancer Res 19:3969–3976

    PubMed  CAS  Google Scholar 

  23. Beeram M, Patnaik A, Rowinsky EK (2005) Raf: a strategic target for therapeutic development against cancer. J Clin Oncol 23:6771–6790

    Article  PubMed  CAS  Google Scholar 

  24. Bartholomeusz C, Itamochi H, Yuan LX, Esteva FJ, Wood CG, Terakawa N et al (2005) Bcl-2 antisense oligonucleotide overcomes resistance to E1A gene therapy in a low HER2-expressing ovarian cancer xenograft model. Cancer Res 65:8406–8413

    Article  PubMed  CAS  Google Scholar 

  25. Lacy J, Loomis R, Grill S, Srimatkandada P, Carbone R, Cheng YC (2006) Systemic Bcl-2 antisense oligodeoxynucleotide in combination with cisplatin cures EBV+ nasopharyngeal carcinoma xenografts in SCID mice. Int J Cancer 119:309–316

    Article  PubMed  CAS  Google Scholar 

  26. De Cesare M, Perego P, Righetti SC, Pratesi G, Carenini N, Rivoltini L et al (2005) Enhanced antitumour efficacy of gimatecan in combination with Bcl-2 antisense oligonucleotide in human melanoma xenografts. Eur J Cancer 41:1213–1222

    Article  PubMed  CAS  Google Scholar 

  27. July LV, Beraldi E, So A, Fazli L, Evans K, English JC, Gleave ME (2004) Nucleotide-based therapies targeting clusterin chemosensitize human lung adenocarcinoma cells both in vitro and in vivo. Mol Cancer Ther 3:223–232

    PubMed  CAS  Google Scholar 

  28. Kim R, Emi M, Tanabe K, Toge T (2004) Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. Cancer 101:2491–2502

    Article  PubMed  CAS  Google Scholar 

  29. O’Connor OA, Smith EA, Toner LE, Teruya-Feldstein J, Frankel S, Rolfe M et al (2006) The combination of the proteasome inhibitor bortezomib and the bcl-2 antisense molecule oblimersen sensitizes human B-cell lymphomas to cyclophosphamide. Clin Cancer Res 12:2902–2911

    Article  PubMed  CAS  Google Scholar 

  30. Bullard KM, Kim HR, Wheeler MA, Wilson CM, Neudauer CL, Simpson MA et al (2003) Hyaluronan synthase-3 is upregulated in metastatic colon carcinoma cells and manipulation of expression alters matrix retention and cellular growth. Int J Cancer 107:739–746

    Article  PubMed  CAS  Google Scholar 

  31. Dartsch DC, Schaefer A, Boldt S, Kolch W, Marquardt H (2002) Comparison of anthracycline-induced death of human leukemia cells: programmed cell death versus necrosis. Apoptosis 7:537–548

    Article  PubMed  CAS  Google Scholar 

  32. Koceva-Chyla A, Jedrzejczak M, Skierski J, Kania K, Jozwiak Z (2005) Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: relation to drug cytotoxicity and caspase-3 activation. Apoptosis 10:1497–1514

    Article  PubMed  CAS  Google Scholar 

  33. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  PubMed  CAS  Google Scholar 

  34. Radotra B, McCormick D (1997) Glioma invasion in vitro is mediated by CD44-hyaluronan interactions. J Pathol 181:434–438

    Article  PubMed  CAS  Google Scholar 

  35. Knutson JR, Iida J, Fields GB, McCarthy JB (1996) CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol Biol Cell 7:383–396

    PubMed  CAS  Google Scholar 

  36. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  PubMed  CAS  Google Scholar 

  37. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    Article  PubMed  CAS  Google Scholar 

  38. Miyake H, Hara I, Kamidono S, Gleave ME (2001) Synergistic chemsensitization and inhibition of tumor growth and metastasis by the antisense oligodeoxynucleotide targeting clusterin gene in a human bladder cancer model. Clin Cancer Res 7:4245–4252

    PubMed  CAS  Google Scholar 

  39. Yang X, Zheng F, Xing H, Gao Q, Wei W, Lu Y et al (2004) Resistance to chemotherapy-induced apoptosis via decreased caspase-3 activity and overexpression of antiapoptotic proteins in ovarian cancer. J Cancer Res Clin Oncol 130:423–428

    Article  PubMed  CAS  Google Scholar 

  40. Mita MM, Ochoa L, Rowinsky EK, Kuhn J, Schwartz G, Hammond LA et al (2006) A phase I, pharmacokinetic and biologic correlative study of oblimersen sodium (Genasense, G3139) and irinotecan in patients with metastatic colorectal cancer. Ann Oncol 17:313–321

    Article  PubMed  CAS  Google Scholar 

  41. Bourguignon LY, Gilad E, Brightman A, Diedrich F, Singleton P (2006) Hyaluronan–CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 281:14026–14040

    Article  PubMed  CAS  Google Scholar 

  42. Bourguignon LY, Gilad E, Rothman K, Peyrollier K (2005) Hyaluronan–CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J Biol Chem 280:11961–11972

    Article  PubMed  CAS  Google Scholar 

  43. Miletti-Gonzalez KE, Chen S, Muthukumaran N, Saglimbeni GN, Wu X, Yang J, Apolito K et al (2005) The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res 65:6660–6667

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Singapore Cancer Syndicate Grant—TN0031, AN0038 and Terry Fox Run Cancer Research Grant 2004 (Chien-Shing Chen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Shing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Z., Choong, P.F., Poon, L.F. et al. Inhibition of CD44 expression in hepatocellular carcinoma cells enhances apoptosis, chemosensitivity, and reduces tumorigenesis and invasion. Cancer Chemother Pharmacol 62, 949–957 (2008). https://doi.org/10.1007/s00280-008-0684-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0684-z

Keywords

Navigation