Skip to main content

Advertisement

Log in

A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors

  • Clinical Trial Report
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

PR-104 is a “pre-prodrug” designed to be activated to a dinitrobenzamide nitrogen mustard cytotoxin by nitroreduction in hypoxic regions of tumors. This study was conducted to establish the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), safety, and pharmacokinetics (PK) of PR-104 in patients with advanced solid tumors.

Methods

Patients with solid tumors refractory or not amenable to conventional treatment were evaluated in a dose-escalation trial of PR-104 administered as a 1-h intravenous (IV) infusion every 3 weeks. The plasma PK of PR-104 and its primary metabolite, PR-104A, were evaluated.

Results

Twenty-seven patients received a median of two cycles of PR-104 in doses ranging from 135 to 1,400 mg/m2. The MTD of PR-104 as a single-dose infusion every 3 weeks was established as 1,100 mg/m2. One of six patients treated at 1,100 mg/m2 experienced DLT of grade 3 fatigue. Above the MTD, the DLTs at 1,400 mg/m2 were febrile neutropenia and infection with normal absolute neutrophil count. No objective responses were observed, although reductions in tumor size were observed in patients treated at doses ≥550 mg/m2. The plasma PK of PR-104 demonstrated rapid conversion to PR-104A, with approximately dose-linear PK of both species.

Conclusions

PR-104 was well tolerated at a dose of 1,100 mg/m2 administered as an IV infusion every 3 weeks. The area under the PR-104A plasma concentration–time curve at this dose exceeded that required for activity in human tumor cell cultures and xenograft models. The recommended dose of PR-104 as a single agent for phase II trials is 1,100 mg/m2 and further trials are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416

    CAS  PubMed  Google Scholar 

  2. Wouters BG, Weppler SA, Koritzinsky M, Landuyt W, Nuyts S, Theys J, Chiu RK, Lambin P (2002) Hypoxia as a target for combined modality treatments. Eur J Cancer 38:240–257

    Article  CAS  PubMed  Google Scholar 

  3. Brown JM, Wilson WR (2004) Exploiting tumor hypoxia in cancer treatment. Nature Rev Cancer 4:437–447

    Article  CAS  Google Scholar 

  4. Tannock IF (1968) The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer 22:258–273

    CAS  PubMed  Google Scholar 

  5. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592

    Article  CAS  PubMed  Google Scholar 

  6. Hicks KO, Pruijn FB, Secomb TW, Hay MP, Hsu R, Brown JM, Denny WA, Dewhirst MW, Wilson WR (2006) Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia-targeted anticancer drugs. J Natl Cancer Inst 98:1118–1128

    Article  CAS  PubMed  Google Scholar 

  7. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    Article  CAS  PubMed  Google Scholar 

  8. Gray LH (1957) Oxygenation in radiotherapy. I. Radiobiological considerations. Br J Radiol 30:403–406

    Article  CAS  PubMed  Google Scholar 

  9. Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and possible implications for radiotherapy. Br J Cancer 9:539–549

    CAS  PubMed  Google Scholar 

  10. Teicher BA, Lazo JS, Sartorelli AC (1981) Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 41:73–81

    CAS  PubMed  Google Scholar 

  11. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387–3394

    CAS  PubMed  Google Scholar 

  12. Wartenberg M, Ling FC, Muschen M, Klein F, Acker H, Gassmann M, Petrat K, Putz V, Hescheler J, Sauer H (2003) Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J 17:503–505

    CAS  PubMed  Google Scholar 

  13. Raspaglio G, Filippetti F, Prislei S, Penci R, De Maria I, Cicchillitti L, Mozzetti S, Scambia G, Ferlini C (2008) Hypoxia induces class III beta-tubulin gene expression by HIF-1alpha binding to its 3′ flanking region. Gene 409:100–108

    Article  CAS  PubMed  Google Scholar 

  14. Liu L, Sun L, Zhang H, Li Z, Ning X, Shi Y, Guo C, Han S, Wu K, Fan D (2009) Hypoxia-mediated up-regulation of MGr1-Ag/37LRP in gastric cancers occurs via hypoxia-inducible-factor 1-dependent mechanism and contributes to drug resistance. Int J Cancer 124:1707–1715

    Article  CAS  PubMed  Google Scholar 

  15. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943

    CAS  PubMed  Google Scholar 

  16. Fyles A, Milosevic M, Hedley D, Pintilie M, Levin W, Manchul L, Hill RP (2002) Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J Clin Oncol 20:680–687

    Article  CAS  PubMed  Google Scholar 

  17. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nature Rev Cancer 2:38–47

    Article  CAS  Google Scholar 

  18. Nordsmark M, Alsner J, Keller J, Nielsen OS, Jensen OM, Horsman MR, Overgaard J (2001) Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br J Cancer 84:1070–1075

    Article  CAS  PubMed  Google Scholar 

  19. Subarsky P, Hill RP (2003) The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 20:237–250

    Article  CAS  PubMed  Google Scholar 

  20. McKeown SR, Cowen RL, Williams KJ (2007) Bioreductive drugs: from concept to clinic. Clin Oncol 19:427–442

    Article  CAS  Google Scholar 

  21. Plumb JA, Gerritsen M, Milroy R, Thomson P, Workman P (1994) Relative importance of DT-diaphorase and hypoxia in the bioactivation of EO9 by human lung tumor cell lines. Int J Radiat Oncol Biol Phys 29:295–299

    CAS  PubMed  Google Scholar 

  22. Haffty BG, Wilson LD, Son YH, Cho EI, Papac RJ, Fischer DB, Rockwell S, Sartorelli AC, Ross DA, Sasaki CT, Fischer JJ (2005) Concurrent chemo-radiotherapy with mitomycin C compared with porfiromycin in squamous cell cancer of the head and neck: final results of a randomized clinical trial. Int J Radiat Oncol Biol Phys 61:119–128

    CAS  PubMed  Google Scholar 

  23. van der Heijden AG, Moonen PM, Cornel EB, Vergunst H, de Reijke TM, van Boven E, Barten EJ, Puri R, van Kalken CK, Witjes JA (2006) Phase II marker lesion study with intravesical instillation of apaziquone for superficial bladder cancer: toxicity and marker response. J Urol 176:1349–1353

    Article  PubMed  CAS  Google Scholar 

  24. Sharp SY, Kelland LR, Valenti MR, Brunton LA, Hobbs S, Workman P (2000) Establishment of an isogenic human colon tumor model for NQO1 gene expression: application to investigate the role of DT-diaphorase in bioreductive drug activation in vitro and in vivo. Mol Pharmacol 58:1146–1155

    CAS  PubMed  Google Scholar 

  25. Knox RJ, Friedlos F, Marchbank T, Roberts JJ (1991) Bioactivation of CB 1954: reaction of the active 4-hydroxylamino derivative with thioesters to form the ultimate DNA–DNA interstrand crosslinking species. Biochem Pharmacol 42:1691–1697

    Article  CAS  PubMed  Google Scholar 

  26. Celli CM, Tran N, Knox R, Jaiswal AK (2006) NRH:quinone oxidoreductase 2 (NQO2) catalyzes metabolic activation of quinones and anti-tumor drugs. Biochem Pharmacol 72:366–376

    Article  CAS  PubMed  Google Scholar 

  27. Chung-Faye G, Palmer D, Anderson D, Clark J, Downes M, Baddeley J, Hussain S, Murray PI, Searle P, Seymour L, Harris PA, Ferry D, Kerr DJ (2001) Virus-directed, enzyme prodrug therapy with nitroimidazole reductase: a phase I and pharmacokinetic study of its prodrug, CB1954. Clin Cancer Res 7:2662–2668

    CAS  PubMed  Google Scholar 

  28. Palmer DH, Mautner V, Mirza D, Oliff S, Gerritsen W, van dS, Jr, Hubscher S, Reynolds G, Bonney S, Rajaratnam R, Hull D, Horne M, Ellis J, Mountain A, Hill S, Harris PA, Searle PF, Young LS, James ND, Kerr DJ (2004) Virus-directed enzyme prodrug therapy: intratumoral administration of a replication-deficient adenovirus encoding nitroreductase to patients with resectable liver cancer. J Clin Oncol 22:1546–1552

  29. Searle PF, Chen MJ, Hu L, Race PR, Lovering AL, Grove JI, Guise C, Jaberipour M, James ND, Mautner V, Young LS, Kerr KJ, Mountain A, White SA, Hyde EI (2004) Nitroreductase: a prodrug-activating enzyme for cancer gene therapy. Clin Exp Pharmacol Physiol 31:811–816

    Article  CAS  PubMed  Google Scholar 

  30. von Pawel J, von Roemeling R, Gatzemeier U, Boyer M, Elisson LO, Clark P, Talbot D, Rey A, Butler TW, Hirsh V, Olver I, Bergman B, Ayoub J, Richardson G, Dunlop D, Arcenas A, Vescio R, Viallet J, Treat J (2000) Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: a report of the international CATAPULT I study group. Cisplatin and tirapazamine in subjects with advanced previously untreated non-small-cell lung tumors. J Clin Oncol 18:1351–1359

    Google Scholar 

  31. Shepherd F, Koschel G, von Pawel J, Gatzmeier U, van Zandwiyk N, Woll P, van Klavren R, Krasko P, Desimone P, Nicolson M, Pieters W, Bigelow R, Rey A, Biallet J, Loh E (2000) Comparison of Tirazone (tirapazamine) and cisplatin vs. etoposide and cisplatin in advanced non-small cell lung cancer (NSCLC): final results of the international phase III CATAPULT II Trial. Lung Cancer 29 (suppl 1):28, abstract 87

    Google Scholar 

  32. Williamson SK, Crowley JJ, Lara PN Jr, McCoy J, Lau DH, Tucker RW, Mills GM, Gandara DR (2005) Phase III trial of paclitaxel plus carboplatin with or without tirapazamine in advanced non-small-cell lung cancer: Southwest Oncology Group Trial S0003. J Clin Oncol 23:9097–9104

    Article  CAS  PubMed  Google Scholar 

  33. Rischin D, Peters L, O’Sullivan B, Giralt J, Yuen K, Trotti A, Bernier J, Bourhis J, Henke M, Fisher R (2008) Phase III study of tirapazamine, cisplatin and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck. J Clin Oncol 26:Abstract LBA6008

  34. Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, Peters LJ, Trans-Tasman Radiation Oncology Group (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24:2098–2104

    Article  PubMed  Google Scholar 

  35. Wilson WR, Hicks KO, Pullen SM, Ferry DM, Helsby NA, Patterson AV (2007) Bystander effects of bioreductive drugs: potential for exploiting pathological tumor hypoxia with dinitrobenzamide mustards. Radiat Res 167:625–636

    Article  CAS  PubMed  Google Scholar 

  36. Koch CJ (1993) Unusual oxygen concentration dependence of toxicity of SR-4233, a hypoxic cell toxin. Cancer Res 53:3992–3997

    CAS  PubMed  Google Scholar 

  37. Hicks KO, Siim BG, Pruijn FB, Wilson WR (2004) Oxygen dependence of the metabolic activation and cytotoxicity of tirapazamine: implications for extravascular transport and activity in tumors. Radiat Res 161:656–666

    Article  CAS  PubMed  Google Scholar 

  38. Lee AE, Wilson WR (2000) Hypoxia-dependent retinal toxicity of bioreductive anticancer prodrugs in mice. Toxicol Appl Pharmacol 163:50–59

    Article  CAS  PubMed  Google Scholar 

  39. Parmar K, Mauch P, Vergilio J, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104:5431–5436

    Article  CAS  PubMed  Google Scholar 

  40. Helsby NA, Wheeler SJ, Pruijn FB, Palmer BD, Yang S, Denny WA, Wilson WR (2003) Effect of nitroreduction on the alkylating reactivity and cytotoxicity of the 2, 4-dinitrobenzamide-5-aziridine CB 1954 and the corresponding nitrogen mustard SN 23862: distinct mechanisms of bioreductive activation. Chem Res Toxicol 16:469–478

    Article  CAS  PubMed  Google Scholar 

  41. Patterson AV, Ferry DM, Edmunds SJ, Gu Y, Singleton RS, Patel K, Pullen SM, Syddall SP, Atwell GJ, Yang S, Denny WA, Wilson WR (2007) Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA crosslinking agent PR-104. Clin Cancer Res 13:3922–3932

    Article  CAS  PubMed  Google Scholar 

  42. Hicks KO, Myint H, Patterson AV, Pruijn FB, Siim BG, Patel K, Wilson WR (2007) Oxygen dependence and extravascular transport of hypoxia-activated prodrugs: comparison of the dinitrobenzamide mustard PR-104A and tirapazamine. Int J Radiat Oncol Biol Phys 69:560–571

    CAS  PubMed  Google Scholar 

  43. Singleton RS, Guise CP, Ferry DM, Pullen SM, Dorie MJ, Brown JM, Patterson AV, Wilson WR (2009) DNA crosslinks in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism and cytotoxicity. Cancer Res 69:3884–3891

    Article  CAS  PubMed  Google Scholar 

  44. Patel K, Lewiston D, Gu Y, Hicks KO, Wilson WR (2007) Analysis of the hypoxia-activated dinitrobenzamide mustard phosphate prodrug PR-104 and its alcohol metabolite PR-104A in plasma and tissues by liquid chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 856:302–311

    Article  CAS  PubMed  Google Scholar 

  45. Guise CP, Wang A, Thiel A, Bridewell D, Wilson WR, Patterson AV (2007) Identification of human reductases that activate the dinitrobenzamide mustard prodrug PR-104A: a role for NADPH:cytochrome P450 oxidoreductase under hypoxia. Biochem Pharmacol 74:810–820

    Article  CAS  PubMed  Google Scholar 

  46. Gu Y, Patterson AV, Atwell GJ, Chernikova SB, Brown JM, Thompson LH, Wilson WR (2009) Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated dinitrobenzamide mustard PR-104A. Mol Cancer Ther 8:1714–1723

    Article  CAS  PubMed  Google Scholar 

  47. Liu SC, Ahn GO, Kioi M, Dorie MJ, Patterson AV, Brown JM (2008) Optimised Clostridium-directed enzyme prodrug therapy improves the antitumor activity of the novel DNA crosslinking agent PR-104. Cancer Res 68:7995–8003

    Article  CAS  PubMed  Google Scholar 

  48. Guise CP, Abbattista M, Singleton RS, Holford SD, Connolly J, Dachs GU, Fox SB, Pollock R, Harvey J, Guilford P, Doñate F, Wilson WR, Patterson AV (2008) The bioreductive prodrug PR-104 is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res (in press)

  49. Penning TM, Drury JE (2007) Human aldo-keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch Biochem Biophys 464:241–250

    Article  CAS  PubMed  Google Scholar 

  50. Wako K, Kawasaki T, Yamana K, Suzuki K, Jiang S, Umezu H, Nishiyama T, Takahashi K, Hamakubo T, Kodama T, Naito M (2008) Expression of androgen receptor through androgen-converting enzymes is associated with biological aggressiveness in prostate cancer. J Clin Pathol 61:448–454

    Article  CAS  PubMed  Google Scholar 

  51. Ito K, Utsunomiya H, Suzuki T, Saitou S, Akahira J, Okamura K, Yaegashi N, Sasano H (2006) 17Beta-hydroxysteroid dehydrogenases in human endometrium and its disorders (Review). Mol Cell Endocrinol 248:136–140

    Article  CAS  PubMed  Google Scholar 

  52. Sakurai M, Oishi K, Watanabe K (2005) Localization of cyclooxygenases-1 and -2, and prostaglandin F synthase in human kidney and renal cell carcinoma. Biochem Biophys Res Commun 338:82–86

    Article  CAS  PubMed  Google Scholar 

  53. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, van Glabbeke M, Van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92:205–216

    Article  CAS  PubMed  Google Scholar 

  54. Atwell GJ, Denny WA (2007) Synthesis of 3H- and 2H4-labelled versions of the hypoxia-activated pre-prodrug 2-[(2-bromoethyl)-2, 4-dinitro-6-[[[2-(phosphonooxy)ethyl]amino]carbonyl]anilino]ethyl methanesulfonate (PR-104). J Labelled Comp Radiopharm 50:7–12

    Article  CAS  Google Scholar 

  55. Tannock IF, Lee CM, Tunggal JK, Cowan DS, Egorin MJ (2002) Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res 8:878–884

    CAS  PubMed  Google Scholar 

  56. Huxham LA, Kyle AH, Baker JHE, Nykilchuk LK, Minchinton AI (2004) Microregional effects of gemcitabine in HCT-116 xenografts. Cancer Res 63:6537–6541

    Article  Google Scholar 

  57. Birtwistle J, Hayden RE, Khanim FL, Green RM, Pearce C, Davies NJ, Wake N, Schrewe H, Ride JP, Chipman JK, Bunce CM (2009) The aldo-keto reductase AKR1C3 contributes to 7, 12-dimethylbenz(a)anthracene-3, 4-dihydrodiol mediated oxidative DNA damage in myeloid cells: implications for leukemogenesis. Mutat Res 662:67–74

    CAS  PubMed  Google Scholar 

  58. Koukourakis MI, Bentzen SM, Giatromanolaki A, Wilson GD, Daley FM, Saunders MI, Dische S, Sivridis E, Harris AL (2006) Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol 24:727–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the patients who participated in this trial and the research staff for their assistance in patient care and their dedication to clinical trials. We also thank Kashyap Patel and Prof. Nick Holford for advice on pharmacokinetic analysis, and Terri Melink for assistance with preparation of the manuscript. Financial support for this trial was provided by Proacta, Inc.

Conflicts of interest statement

No financial conflict exists for authors M.B.J., D.R., and M.P. The following authors have indicated a potential conflict of interest: J.G. is employed by Proacta Inc. with stock ownership; A.V.P is a consultant to Proacta Inc.; and W.A.D. and W.R.W. are consultants/played an advisory role to Proacta Inc. and have stock ownership and received research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Jameson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jameson, M.B., Rischin, D., Pegram, M. et al. A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol 65, 791–801 (2010). https://doi.org/10.1007/s00280-009-1188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1188-1

Keywords

Navigation