Skip to main content

Advertisement

Log in

Rapamycin suppresses ROS-dependent apoptosis caused by selenomethionine in A549 lung carcinoma cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Although selenium compounds possess chemotherapeutic features by inducing apoptosis in cancer cells with trivial side effects on normal cells, the mechanisms underlying its anti-cancer activity are insufficiently understood at the present. In this study, we investigated the effects of rapamycin on apoptosis induced by seleno-L-methionine (SeMet) or selenite in A549 cells.

Methods

The effects of Se compounds, SeMet and selenite, on cell proliferation, apoptosis and its signaling pathway were investigated in established human adenocarcinoma cell line (A549). Cancer cells were treated with each Se during different periods. Cell apoptosis and signaling molecules were analyzed by flow cytometry (TUNEL method) or immunoblotting, respectively.

Results

SeMet induces reactive oxygen species generation associated with the induction of apoptosis, because pretreatment of cells with N-acetyl-L-cysteine completely blocked SeMet-induced apoptosis. We also found that rapamycin completely suppressed the apoptosis of cells treated by SeMet, but not selenite. SeMet-induced apoptosis is significantly downregulated in combination with PI3 K family inhibitors (LY294002, wortmannin, PI-103, and 3-methyladenine). In addition, ROS generation was included in downstream signaling events associated with the phosphorylation of mTOR, because pretreatment of cells with rapamycin inhibited ROS generation.

Conclusion

These results suggest that SeMet-induced apoptosis is affected by the Akt/mTOR/ROS pathway in A549 cells. Akt serves an anti-survival function in the system of SeMet-treated lung cancer cells, but autophagic signaling remained unsolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  PubMed  CAS  Google Scholar 

  2. Suzuki M, Endo M, Shinohara F, Echigo S, Rikiishi H (2010) Differential apoptotic response of human cancer cells to organoselenium compounds. Cancer Chemother Pharmacol 66:475–484

    Article  PubMed  CAS  Google Scholar 

  3. Fakih MG, Pendyala L, Brady W, Smith PF, Ross ME, Creaven PJ, Badmaev V, Prey JD, Rustum YM (2008) A Phase I and pharmacokinetic study of selenomethionine in combination with a fixed dose of irinotecan in solid tumors. Cancer Chemother Pharmacol 62:499–508

    Article  PubMed  CAS  Google Scholar 

  4. Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130:1653–1656

    PubMed  CAS  Google Scholar 

  5. Unni E, Koul D, Yung WK, Sinha R (2005) Se-methylselenocysteine inhibits phosphatidylinositol 3-kinase activity of mouse mammary epithelial tumor cells in Vitro. Breast Cancer Res 7:699–707

    Article  Google Scholar 

  6. Hu H, Jiang C, Li G, Lu J (2005) PKB/AKT and ERK regulation of caspase-mediated apoptosis by methylseleninic acid in LNCaP prostate cancer cells. Carcinogenesis 26:1374–1381

    Article  PubMed  CAS  Google Scholar 

  7. Zhao R, Xiang N, Domann FE, Zhong W (2009) Effects of selenite and genistein on G2/M cell cycle arrest and apoptosis in human prostate cancer cells. Nutr Cancer 61:397–407

    Article  PubMed  CAS  Google Scholar 

  8. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  9. Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I, Unterman T, Hay N (2008) Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14:458–470

    Article  PubMed  CAS  Google Scholar 

  10. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  PubMed  CAS  Google Scholar 

  11. Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N (2006) mTOR signaling: Implications for cancer and anticancer therapy. Br J Cancer 94:195–199

    Article  PubMed  CAS  Google Scholar 

  12. Paglin S, Lee NY, Nakar C, Fitzgerald M, Plotkin J, Deuel B, Hackett N, McMahill M, Sphicas E, Lampen N, Yahalom J (2005) Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells. Cancer Res 65:11061–11070

    Article  PubMed  CAS  Google Scholar 

  13. Mondesire WH, Jian W, Zhang H, Ensor J, Hung MC, Mills GB, Meric-Bernstam F (2004) Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin Cancer Res 10:7031–7042

    Article  PubMed  CAS  Google Scholar 

  14. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    Article  PubMed  CAS  Google Scholar 

  15. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W (2000) Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407:390–395

    Article  PubMed  CAS  Google Scholar 

  16. Hu D, Liu Q, Cui H, Wang H, Han D, Xu H (2005) Effects of amino acids from selenium-rich silkworm pupas on human hepatoma cells. Life Sci 77:2098–2110

    Article  PubMed  CAS  Google Scholar 

  17. Koshikawa N, Hayashi J, Nakagawara A, Takenaga K (2009) Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1α gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway. J Biol Chem 284:33185–33194

    Article  PubMed  CAS  Google Scholar 

  18. Suzuki M, Shinohara F, Rikiishi H (2008) Zebularine-induced reduction in VEGF secretion by HIF-1α degradation in oral squamous cell carcinoma. Mol Med Rep 1:465–471

    CAS  Google Scholar 

  19. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 21:5720–5728

    Article  Google Scholar 

  20. Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30:2–10

    Article  PubMed  CAS  Google Scholar 

  21. Huang F, Nie C, Yang Y, Yue W, Ren Y, Shang Y, Wang X, Jin H, Xu C, Chen Q (2009) Selenite induces redox-dependent Bax activation and apoptosis in colorectal cancer cells. Free Radic Biol Med 46:1186–1196

    Article  PubMed  CAS  Google Scholar 

  22. Chen T, Wong YS (2009) Selenocystine induces reactive oxygen species-mediated apoptosis in human cancer cells. Biomed Pharmacother 63:105–113

    Article  PubMed  CAS  Google Scholar 

  23. Kim JH, Chu SC, Gramlich JL, Pride YB, Babendreier E, Chauhan D, Salgia R, Podar K, Griffin JD, Sattler M (2005) Activation of the PI3 K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood 105:1717–1723

    Article  PubMed  CAS  Google Scholar 

  24. Maddika S, Ande SR, Wiechec E, Hansen LL, Wesselborg S, Los M (2008) Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J Cell Sci 121:979–988

    Article  PubMed  CAS  Google Scholar 

  25. Lu B, Wang L, Stehlik C, Medan D, Huang C, Hu S, Chen F, Shi X, Rojanasakul Y (2006) Phosphatidylinositol 3-kinase/Akt positively regulates Fas (CD95)-mediated apoptosis in epidermal Cl41 cells. J Immunol 176:6785–6793

    PubMed  CAS  Google Scholar 

  26. Van Gorp AG, Pomeranz KM, Birkenkamp KU, Hui RC, Lam EW, Coffer PJ (2006) Chronic protein kinase B (PKB/c-akt) activation leads to apoptosis induced by oxidative stress-mediated Foxo3a transcriptional up-regulation. Cancer Res 66:10760–10769

    Article  PubMed  Google Scholar 

  27. Ren Y, Huang F, Liu Y, Yang Y, Jiang Q, Xu C (2009) Autophagy inhibition through PI3 K/Akt increases apoptosis by sodium selenite in NB4 cells. BMB Rep 42:599–604

    PubMed  CAS  Google Scholar 

  28. Honeggar M, Beck R, Moos PJ (2009) Thioredoxin reductase 1 ablation sensitizes colon cancer cells to methylseleninate-mediated cytotoxicity. Toxicol Appl Pharmacol 241:348–355

    Article  PubMed  CAS  Google Scholar 

  29. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6:366–377

    Article  PubMed  CAS  Google Scholar 

  30. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A (2005) Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4:1533–1540

    Article  PubMed  CAS  Google Scholar 

  31. Matsuzaki T, Yashiro M, Kaizaki R, Yasuda K, Doi Y, Sawada T, Ohira M, Hirakawa K (2009) Synergistic antiproliferative effect of mTOR inhibitors in combination with 5-fluorouracil in scirrhous gastric cancer. Cancer Sci 100:2402–2410

    Article  PubMed  CAS  Google Scholar 

  32. Workman P, Clarke PA, Raynaud FI, van Montfort RL (2010) Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res 70:2146–2157

    Article  PubMed  CAS  Google Scholar 

  33. Ito S, Koshikawa N, Mochizuki S, Takenaga K (2007) 3-Methyladenine suppresses cell migration and invasion of HT1080 fibrosarcoma cells through inhibiting phosphoinositide 3-kinases independently of autophagy inhibition. Int J Oncol 31:261–268

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. D. Mrozek for editing the manuscript. This work was supported in part by a Grant-in-Aid for Scientific Research (20659309) from the Japan Society for the Promotion of Science and (22791948 and 21791967) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemi Rikiishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, M., Endo, M., Shinohara, F. et al. Rapamycin suppresses ROS-dependent apoptosis caused by selenomethionine in A549 lung carcinoma cells. Cancer Chemother Pharmacol 67, 1129–1136 (2011). https://doi.org/10.1007/s00280-010-1417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1417-7

Keywords

Navigation