Skip to main content

Advertisement

Log in

Sensitivity of neuroblastoma to the novel kinase inhibitor cabozantinib is mediated by ERK inhibition

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Children with high-risk neuroblastoma have poor survival rates, and novel therapies are needed. We hypothesized that cabozantinib would be effective against neuroblastoma tumor cells and tumors in preclinical models via inhibition of receptor tyrosine kinase signaling pathways.

Methods

We determined neuroblastoma cell viability after treatment with cabozantinib alone and in combination with 13-cis-retinoic acid, topotecan, and temozolomide using MTT assays. Inhibition of RET and intracellular signaling was measured by Western blot analysis of treated and untreated cells. To investigate the efficacy of cabozantinib against neuroblastoma tumors in vivo, neuroblastoma cells were injected orthotopically into immunocompromised mice, and mice were treated with oral cabozantinib. Tumors were evaluated for growth by determination of in vivo luminescence and final tumor weights.

Results

All neuroblastoma cell lines were sensitive to cabozantinib, and IC50 values ranged from 1.6 to 16.2 μM. Cabozantinib treatment was synergistic with 13-cis-retinoic acid and chemotherapy agents topotecan and temozolomide. Cabozantinib treatment inhibited RET phosphorylation in all cell lines and ERK phosphorylation in more sensitive neuroblastoma cell lines. In mice with neuroblastoma xenograft tumors, cabozantinib treatment significantly reduced tumor growth.

Conclusions

Treatment of neuroblastoma tumor cells with cabozantinib inhibits RET and ERK phosphorylation and is effective against neuroblastoma tumor cell lines alone and in combination with 13-cis-retinoic acid, topotecan, and temozolomide. Cabozantinib treatment is also effective in reducing tumor growth in vivo. Cabozantinib therefore represents a novel therapeutic agent for neuroblastoma, and further preclinical and clinical studies are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

VEGFR-2:

Vascular endothelial growth factor receptor-2

ATCC:

American Type Culture Collection

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

FBS:

Fetal bovine serum

DMEM:

Dulbecco’s modified Eagle’s medium

MTT:

3-(4,5-Dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide

GDNF:

Glial-derived neurotrophic factor

MTC:

Medullary thyroid cancer

PBS:

Phosphate-buffered saline

CI:

Combination index

References

  1. Ladenstein R, Philip T, Lasset C, Hartmann O, Garaventa A, Pinkerton R et al (2009) Multivariate analysis of risk factors in stage 4 neuroblastoma patients over the age of one year treated with megatherapy and stem-cell transplantation: a report from the European Bone Marrow Transplantation Solid Tumor Registry. J Clin Oncol 16:953–965

    Google Scholar 

  2. Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D et al (2009) Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a Children’s Oncology Group study. J Clin Oncol 27:1007–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Zage PE, Kletzel M, Murray K, Marcus R, Castleberry R, Zhang Y et al (2008) Outcomes of the POG 9340/9341/9342 trials for children with high-risk neuroblastoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 51:747–753

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lau L, Tai D, Weitzman S, Grant R, Baruchel S, Malkin D (2004) Factors influencing survival in children with recurrent neuroblastoma. J Pediatr Hematol Oncol 26:227–232

    Article  PubMed  Google Scholar 

  5. London WB, Castel V, Monclair T, Ambros PF, Pearson ADJ, Cohn SL et al (2011) Clinical and biologic features predictive of survival after relapse of neuroblastoma: a report from the International Neuroblastoma Risk Group project. J Clin Oncol 29:3286–3292

    Article  PubMed Central  PubMed  Google Scholar 

  6. Matsui T, Sano K, Tsukamoto T, Ito M, Takaishi T, Nakata H et al (1993) Human neuroblastoma cells express alpha and beta platelet-derived growth factor receptors coupling with neurotrophic and chemotactic signaling. J Clin Invest 92:1153–1160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cohen PS, Chan JP, Lipkunskaya M, Biedler JL, Seeger RC (1994) Expression of stem cell factor and c-kit in human neuroblastoma. The Children’s Cancer Group. Blood 84:3465–3472

    CAS  PubMed  Google Scholar 

  8. Janet T, Ludecke G, Otten U, Unsicker K (1995) Heterogeneity of human neuroblastoma cell lines in their proliferative responses to basic FGF, NGF, and EGF: correlation with expression of growth factors and growth factor receptors. J Neurosci Res 40:707–715

    Article  CAS  PubMed  Google Scholar 

  9. Eggert A, Ikegaki N, Kwiatkowski J, Zhao H, Brodeur GM, Himelstein BP (2000) High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin Cancer Res 6:1900–1908

    CAS  PubMed  Google Scholar 

  10. Langer I, Vertongen P, Perret J, Fontaine J, Atassi G, Robberecht P (2000) Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in human neuroblastomas. Med Pediatr Oncol 34:386–393

    Article  CAS  PubMed  Google Scholar 

  11. Hecht M, Papoutsi M, Tran HD, Wilting J, Schweigerer L (2004) Hepatocyte growth factor/c-Met signaling promotes the progression of experimental human neuroblastomas. Cancer Res 64:6109–6118

    Article  CAS  PubMed  Google Scholar 

  12. Meyers MB, Shen WP, Spengler BA, Ciccarone V, O’Brien JP, Donner DB et al (1998) Increased epidermal growth factor receptor in multidrug-resistant human neuroblastoma cells. J Cell Biochem 38:87–97

    Article  Google Scholar 

  13. Ho R, Minturn JE, Hishiki T, Zhao H, Wang Q, Cnaan A et al (2005) Proliferation of human neuroblastomas mediated by the epidermal growth factor receptor. Cancer Res 65:9868–9875

    Article  CAS  PubMed  Google Scholar 

  14. Meister B, Grunebach F, Bautz F, Brugger W, Fink FM, Kanz L, Mohle R (1999) Expression of vascular endothelial growth factor (VEGF) and its receptors in human neuroblastoma. Eur J Cancer 35:445–449

    Article  CAS  PubMed  Google Scholar 

  15. Fakhari M, Pullirsch D, Paya K, Abraham D, Hofbauer R, Aharinejad S (2002) Upregulation of vascular endothelial growth factor receptors is associated with advanced neuroblastoma. J Pediatr Surg 37:582–587

    Article  CAS  PubMed  Google Scholar 

  16. Crosswell HE, Dasgupta A, Alvarado CS, Watt T, Christensen JG, De P et al (2009) PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells. BMC Cancer 9:411

    Article  PubMed Central  PubMed  Google Scholar 

  17. Grüllich C (2014) Cabozantinib: a MET, RET, and VEGFR2 tyrosine kinase inhibitor. Recent Results Cancer Res 201:207–214

    Article  PubMed  Google Scholar 

  18. Viola D, Cappagli V, Elisei R (2013) Cabozantinib (XL184) for the treatment of locally advanced or metastatic progressive medullary thyroid cancer. Future Oncol 9:1083–1092

    Article  CAS  PubMed  Google Scholar 

  19. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P et al (2011) Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 10:2298–2308

    Article  CAS  PubMed  Google Scholar 

  20. Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin V et al (2012) Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2:270–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R et al (2011) Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol 29:2660–2666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gordon MS, Vogelzang NJ, Schoffski P, Daud A, Spira AI, O’Keeffe BA et al (2011) Cabozantinib (XL184) has activity in both soft tissue and bone: results of a phase II randomized discontinuation trial in patients with advanced solid tumors. J Clin Oncol 29:3010

    Google Scholar 

  23. Drilon A, Wang L, Hasanovic A, Suehara Y, Lipson D, Stephens P et al (2013) Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov 3:630–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Smith MR, Sweeney CJ, Corn PG, Rathkopf DE, Smith DC, Hussain M et al (2014) Cabozantinib in chemotherapy-pretreated metastatic castration-resistant prostate cancer: results of a phase II nonrandomized expansion study. J Clin Oncol 32:3391–3399

    Article  CAS  PubMed  Google Scholar 

  25. Choueiri TK, Pal SK, McDermott DF, Morrissey S, Ferguson KC, Holland J et al (2014) A phase I study of cabozantinib (XL184) in patients with renal cell cancer. Ann Oncol 25:1603–1608

    Article  CAS  PubMed  Google Scholar 

  26. Elisei R, Schlumberger MJ, Müller SP, Schöffski P, Brose MS, Shah MH et al (2013) Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 31:3639–3646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zage PE, Zeng L, Palla S, Fang W, Nilsson MB, Heymach JV et al (2010) A novel therapeutic combination for neuroblastoma: the VEGFR/EGFR/RET inhibitor vandetanib with 13-cis-retinoic acid. Cancer 116:2465–2475

    CAS  PubMed  Google Scholar 

  28. Yan B, Lim M, Zhou L, Kuick CH, Leong MY, Yong KJ et al (2013) Identification of MET genomic amplification, protein expression, and alternative splice isoforms in neuroblastomas. J Clin Pathol 66:985–991

    Article  CAS  PubMed  Google Scholar 

  29. Scorsone K, Zhang L, Woodfield SE, Hicks J, Zage PE (2014) The novel kinase inhibitor EMD1214063 is effective against neuroblastoma. Invest New Drugs 32:815–824

    Article  CAS  PubMed  Google Scholar 

  30. Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33:2643–2652

    CAS  PubMed  Google Scholar 

  31. Brodeur GM, Green AA, Hayes FA, Williams KJ, Williams DL, Tsiatis AA (1981) Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 41:4678–4686

    CAS  PubMed  Google Scholar 

  32. Reynolds CP, Tomayko MM, Donner L, Helson L, Seeger RC, Triche TJ et al (1988) Biological classification of cell lines derived from human extra-cranial neural tumors. Prog Clin Biol Res 271:291–306

    CAS  PubMed  Google Scholar 

  33. Schlesinger HR, Gerson JM, Moorhead PS, Maguire H, Hummeler K (1976) Establishment and characterization of human neuroblastoma cell line. Cancer Res 36:3094–3100

    CAS  PubMed  Google Scholar 

  34. Keshelava N, Seeger RC, Groshen S, Reynolds CP (1998) Drug resistance patterns of human neuroblastoma cell lines derived from patients at different phases of therapy. Cancer Res 58:5396–5405

    CAS  PubMed  Google Scholar 

  35. Tumilowicz JJ, Nichols WW, Cholon JJ, Greene AE (1970) Definition of a continuous human cell line derived from neuroblastoma. Cancer Res 30:2110–2118

    CAS  PubMed  Google Scholar 

  36. Ciccarone V, Spengler BA, Meyers MB, Biedler JL, Ross RA (1989) Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res 49:219–225

    CAS  PubMed  Google Scholar 

  37. Sugimoto T, Tatsumi E, Kemshed JT, Helson L, Green AA, Minowada J (1984) Determination of cell surface membrane antigens common to both human neuroblastoma and leukemia–lymphoma cell lines by a panel of 38 monoclonal antibodies. J Natl Cancer Inst 73:51–57

    CAS  PubMed  Google Scholar 

  38. Helson L, Helson C (1985) Human neuroblastoma cells and 13-cis-retinoic acid. J Neurooncol 3:39–41

    CAS  PubMed  Google Scholar 

  39. Gilbert F, Feder M, Balaban G, Brangman D, Lurie DK, Podolsky R, Rinaldt V, Vinikoor N, Weisband J (1984) Human neuroblastoma and abnormalities of chromosomes 1 and 17. Cancer Res 44:5444–5449

    CAS  PubMed  Google Scholar 

  40. Santana VM, Furman WL, Billups CA, Hoffer F, Davidoff AM, Houghton PJ et al (2005) Improved response in high-risk neuroblastoma with protracted topotecan administration using a pharmacokinetically guided dosing approach. J Clin Oncol 23:4039–4047

    Article  CAS  PubMed  Google Scholar 

  41. Rubie H, Chisholm J, Defachelles AS, Morland B, Munzer C, Valteau-Couanet D et al (2006) Phase II study of temozolomide in relapsed or refractory high-risk neuroblastoma: a joint Societe Francaise des Cancers de l’Enfant and United Kingdom Children Cancer Study Group-New Agents Group Study. J Clin Oncol 24:5259–5264

    Article  CAS  PubMed  Google Scholar 

  42. Miller WH (1998) The emerging role of retinoids and retinoic acid metabolism blocking agents in the treatment of cancer. Cancer 83:1471–1482

    Article  CAS  PubMed  Google Scholar 

  43. Sidell N (1982) Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J Natl Cancer Inst 68:589–596

    CAS  PubMed  Google Scholar 

  44. Sidell N, Altman A, Haussler MR, Seeger RC (1983) Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp Cell Res 148:21–30

    Article  CAS  PubMed  Google Scholar 

  45. Thiele CJ, Reynolds CP, Israel MA (1985) Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313:404–406

    Article  CAS  PubMed  Google Scholar 

  46. Hishiki T, Nimura Y, Isogai E, Kondo K, Ichimiya S, Nakamura Y et al (1998) Glial cell line-derived neurotrophic factor/neurturin-induced differentiation and its enhancement by retinoic acid in primary human neuroblastomas expressing c-Ret, GFR alpha-1, and GFR alpha-2. Cancer Res 58:2158–2165

    CAS  PubMed  Google Scholar 

  47. Oppenheimer O, Cheung N-K, Gerald WL (2007) The RET oncogene is a critical component of transcriptional programs associated with retinoic acid-induced differentiation in neuroblastoma. Mol Cancer Ther 6:1300–1309

    Article  CAS  PubMed  Google Scholar 

  48. Bunone G, Borrello MG, Picetti R, Bongarzone I, Peverali FA, de Franciscis V et al (1995) Induction of RET proto-oncogene expression in neuroblastoma cells precedes neuronal differentiation and is not mediated by protein synthesis. Exp Cell Res 217:92–99

    Article  CAS  PubMed  Google Scholar 

  49. D’Aleesio A, De Vita G, Cali G, Nitsch L, Fusco A, Vecchio G et al (1995) Expression of the RET oncogene induces differentiation of SK-N-BE neuroblastoma cells. Cell Growth Differ 6:1387–1394

    Google Scholar 

  50. Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Cena V et al (2000) Sequential treatment of SH-SY5Y Cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75:991–1003

    Article  CAS  PubMed  Google Scholar 

  51. Takada N, Isogai E, Kawamoto Nakanishi H, Todo S, Nakagawara A (2001) Retinoic acid-induced apoptosis of the CHP134 neuroblastoma cell line is associated with nuclear accumulation of p53 and is rescued by the GDNF/Ret signal. Med Pediatr Oncol 36:122–126

    Article  CAS  PubMed  Google Scholar 

  52. Carol H, Houghton PJ, Morton CL, Kolb EA, Gorlick R, Reynolds CP, Kang MH, Maris JM, Keir ST, Watkins A, Smith MA, Lock RB (2010) Initial testing of topotecan by the pediatric preclinical testing program. Pediatr Blood Cancer 54:707–715

    PubMed Central  PubMed  Google Scholar 

  53. Keir ST, Maris JM, Reynolds CP, Kang MH, Kolb EA, Gorlick R, Lock R, Carol H, Morton CL, Wu J, Kurmasheva RT, Houghton PJ, Smith MA (2013) Initial testing (stage 1) of temozolomide by the pediatric preclinical testing program. Pediatr Blood Cancer 60:783–790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Donfrancesco A, Jenkner A, Castellano A, Ilari I, Milano GM, De Sio L, Cozza R, Fifani P, Deb G, De Laurentis C, Inserra A, Dominici C (2004) Ifosfamide/carboplatin/etoposide (ICE) as front-line, topotecan/cyclophosphamide as second-line and oral temozolomide as third-line treatment for advanced neuroblastoma over one year of age. Acta Pediatr 445:6–11

    Google Scholar 

  55. London WB, Frantz CN, Campbell LA, Seeger RC, Brumback BA, Cohn SL, Matthay KK, Castleberry RP, Diller L (2010) Phase II randomized comparison of topotecan plus cyclophosphamide versus topotecan alone in children with recurrent or refractory neuroblastoma: a children’s oncology group study. J Clin Oncol 28:3808–3815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Kushner BH, Kramer K, Modak S, Cheung N-KV (2006) Irinotecan plus temozolomide for relapsed or refractory neuroblastoma. J Clin Oncol 24:5271–5276

    Article  CAS  PubMed  Google Scholar 

  57. Bagatell R, London WB, Wagner LM, Voss SD, Stewart CF, Maris JM, Kretschmar C, Cohn SL (2011) Phase II study of irinotecan and temozolomide in children with relapsed or refractory neuroblastoma: a children’s oncology group study. J Clin Oncol 29:208–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Zage.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Characteristics of Neuroblastoma Tumor Cell Lines (XLS 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Scorsone, K., Woodfield, S.E. et al. Sensitivity of neuroblastoma to the novel kinase inhibitor cabozantinib is mediated by ERK inhibition. Cancer Chemother Pharmacol 76, 977–987 (2015). https://doi.org/10.1007/s00280-015-2871-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2871-z

Keywords

Navigation