Skip to main content

Advertisement

Log in

Sunitinib DDI with paracetamol, diclofenac, mefenamic acid and ibuprofen shows sex-divergent effects on the tissue uptake and distribution pattern of sunitinib in mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Pharmacokinetic interaction of sunitinib with diclofenac, paracetamol, mefenamic acid and ibuprofen was evaluated due to their P450 mediated metabolism and OATP1B1, OATP1B3, ABCB1, ABCG2 transporters overlapping features.

Methods

Male and female mice were administered 6 sunitinib doses (60 mg/kg) PO every 12 h and 30 min before the last dose were administered vehicle (control groups), 250 mg/kg paracetamol, 30 mg/kg diclofenac, 50 mg/kg mefenamic acid or 30 mg/kg ibuprofen (study groups), euthanized 6 h post last administration and sunitinib plasma, liver, kidney, brain concentrations analyzed.

Results

Ibuprofen halved sunitinib plasma concentration in female mice (p < 0.01) and showed 59 % lower concentration than male mice (p < 0.05). Diclofenac and paracetamol female mice showed 45 and 25 % higher plasma concentrations than male mice which were 27 % lower in mefenamic acid female mice. Paracetamol increased 2.2 (p < 0.05) liver and 1.4-fold (p < 0.05) kidney sunitinib concentrations in male mice that were lower in female mice (p < 0.01, p < 0.001, respectively). Ibuprofen increased 2.9-fold (p < 0.01) liver concentration in male mice that were higher than in female mice (p < 0.001). Female control mice had 35 % higher sunitinib brain concentration than male mice but the concentration decreased 37, 33, 10 and 57 % in the diclofenac, paracetamol, mefenamic acid and ibuprofen (p < 0.001), respectively. Tissue–plasma concentrations correlations were nonsignificant in control, paracetamol, mefenamic acid and ibuprofen groups but was significant in the diclofenac group in male mice (liver, brain) and female mice (liver, kidney).

Conclusions

These results portray gender-based sunitinib pharmacokinetic differences and NSAIDs selective effects on male or female mice, with potential clinical translatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van Erp NP, Gelderblom H, Guchelaar H-J (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35:692–706. doi:10.1016/j.ctrv.2009.08.004

    Article  PubMed  Google Scholar 

  2. Kusuda Y, Miyake H, Terakawa T, Furukawa J, Muramaki M, Fujisawa M (2011) Treatment of brain metastases from renal cell carcinoma with sunitinib and radiotherapy: our experience and review of the literature. Int J Urol 18:326–329

    Article  PubMed  Google Scholar 

  3. Hatipoglu G, Hock SW, Weiss R, Fan Z, Sehm T, Ghoochani A, Buchfelder M, Savaskan NE, Eyüpoglu IY (2015) Sunitinib impedes brain tumor progression and reduces tumor-induced neurodegeneration in the microenvironment. Cancer Sci 106:160–170. doi:10.1111/cas.12580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koutras AK, Krikelis D, Alexandrou N, Starakis I, Kalofonos HP (2007) Brain metastasis in renal cell cancer responding to sunitinib. Anticancer Res 27:4255–4257

    CAS  PubMed  Google Scholar 

  5. Hu S, Chen Z, Franke R, Orwick S, Zhao M, Rudek MA, Sparreboom A, Baker SD (2009) Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res 15:6062–6069. doi:10.1158/1078-0432.CCR-09-0048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L, Sparreboom A, Baker SD (2013) Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res 19:1458–1466. doi:10.1158/1078-0432.CCR-12-3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang SC, Lagas JS, Lankheet NAG, Poller B, Hillebrand MJ, Rosing H, Beijnen JH, Schinkel AH (2012) Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer 130:223–233. doi:10.1002/ijc.26000

    Article  CAS  PubMed  Google Scholar 

  8. Bowlin SJ, Xia F, Wang W, Robinson KD, Stanek EJ (2013) Twelve-month frequency of drug-metabolizing enzyme and transporter-based drug-drug interaction potential in patients receiving oral enzyme-targeted kinase inhibitor antineoplastic agents. Mayo Clin Proc 88:139–148. doi:10.1016/j.mayocp.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  9. Lau CLL, Chan ST, Selvaratanam M, Khoo HW, Lim AYL, Modamio P, Mariño EL, Segarra I (2015) Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently. Fundam Clin Pharmacol 29:404–416. doi:10.1111/fcp.12126

    Article  CAS  PubMed  Google Scholar 

  10. Chee EL-C, Lim AYL, Modamio P, Fernandez-Lastra C, Segarra I (2015) Sunitinib tissue distribution changes after coadministration with ketoconazole in mice. Eur J Drug Metab Pharmacokinet 41:309–319. doi:10.1007/s13318-015-0264-7

    Article  PubMed  Google Scholar 

  11. Segarra I, Modamio P, Fernández C, Mariño EL (2016) Sunitinib possible sex-divergent therapeutic outcomes. Clin Drug Investig. doi:10.1007/s40261-016-0428-5

    Google Scholar 

  12. Mitra R, Jones S (2012) Adjuvant analgesics in cancer pain: a review. Am J Hosp Palliat Care 29:70–79. doi:10.1177/1049909111413256

    Article  PubMed  Google Scholar 

  13. Weise AM, Liu CY, Shields AF (2009) Fatal liver failure in a patient on acetaminophen treated with sunitinib malate and levothyroxine. Ann Pharmacother 43:761–766. doi:10.1345/aph.1L528

    Article  CAS  PubMed  Google Scholar 

  14. van der Veldt AA, Boven E, Helgason HH, van Wouwe M, Berkhof J, de Gast G, Mallo H, Tillier CN, van den Eertwegh AJ, Haanen JB (2008) Predictive factors for severe toxicity of sunitinib in unselected patients with advanced renal cell cancer. Br J Cancer 99:259–265. doi:10.1038/sj.bjc.6604456

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lim AYL, Segarra I, Chakravarthi S, Akram S, Judson JP (2010) Histopathology and biochemistry analysis of the interaction between sunitinib and paracetamol in mice. BMC Pharmacol 10:14. doi:10.1186/1471-2210-10-14

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tan JR, Chakravarthi S, Judson JP, Haleagrahara N, Segarra I (2013) Potential protective effect of sunitinib after administration of diclofenac: biochemical and histopathological drug-drug interaction assessment in a mouse model. Naunyn Schmiedebergs Arch Pharmacol 386:619–633. doi:10.1007/s00210-013-0861-4

    Article  CAS  PubMed  Google Scholar 

  17. Tan SY, Kan E, Lim WY, Chay G, Law JHK, Soo GW, Bukhari NI, Segarra I (2011) Metronidazole leads to enhanced uptake of imatinib in brain, liver and kidney without affecting its plasma pharmacokinetics in mice. J Pharm Pharmacol 63:918–925. doi:10.1111/j.2042-7158.2011.01296.x

    Article  CAS  PubMed  Google Scholar 

  18. Soo GW, Law JHK, Kan E, Tan SY, Lim WY, Chay G, Bukhari NI, Segarra I (2010) Differential effects of ketoconazole and primaquine on the pharmacokinetics and tissue distribution of imatinib in mice. Anticancer Drugs 21:695–703

    CAS  PubMed  Google Scholar 

  19. Waxman DJ, Holloway MG (2009) Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 76:215–228. doi:10.1124/mol.109.056705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cui YJ, Cheng X, Weaver YM, Klaassen CD (2009) Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab Dispos 37:203–210. doi:10.1124/dmd.108.023721

    Article  CAS  PubMed  Google Scholar 

  21. Sarda S, Page C, Pickup K, Schulz-Utermoehl T, Wilson I (2012) Diclofenac metabolism in the mouse: novel in vivo metabolites identified by high performance liquid chromatography coupled to linear ion trap mass spectrometry. Xenobiotica 42:179–194. doi:10.3109/00498254.2011.607865

    Article  CAS  PubMed  Google Scholar 

  22. Boelsterli UA (2003) Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol Appl Pharmacol 192:307–322

    Article  CAS  PubMed  Google Scholar 

  23. Ohyama K, Murayama N, Shimizu M, Yamazaki H (2014) Drug interactions of diclofenac and its oxidative metabolite with human liver microsomal cytochrome P450 1A2-dependent drug oxidation. Xenobiotica 44:10–16. doi:10.3109/00498254.2013.806837

    Article  CAS  PubMed  Google Scholar 

  24. El-Sheikh AAK, van den Heuvel JJMW, Koenderink JB, Russel FGM (2007) Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther 320:229–235. doi:10.1124/jpet.106.110379

    Article  CAS  PubMed  Google Scholar 

  25. Jemnitz K, Heredi-Szabo K, Janossy J, Ioja E, Vereczkey L, Krajcsi P (2010) ABCC2/Abcc2: a multispecific transporter with dominant excretory functions. Drug Metab Rev 42:402–436. doi:10.3109/03602530903491741

    Article  CAS  PubMed  Google Scholar 

  26. Kindla J, Müller F, Mieth M, Fromm MF, König J (2011) Influence of non-steroidal anti-inflammatory drugs on organic anion transporting polypeptide (OATP) 1B1- and OATP1B3-mediated drug transport. Drug Metab Dispos 39:1047–1053. doi:10.1124/dmd.110.037622

    Article  CAS  PubMed  Google Scholar 

  27. Slosky LM, Thompson BJ, Sanchez-Covarrubias L, Zhang Y, Laracuente M-L, Vanderah TW, Ronaldson PT, Davis TP (2013) Acetaminophen modulates P-glycoprotein functional expression at the blood-brain barrier by a constitutive androstane receptor-dependent mechanism. Mol Pharmacol 84:774–786. doi:10.1124/mol.113.086298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McGill MR, Jaeschke H (2013) Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res 30:2174–2187. doi:10.1007/s11095-013-1007-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Novak A, Carpini GD, Ruiz ML, Luquita MG, Rubio MC, Mottino AD, Ghanem CI (2013) Acetaminophen inhibits intestinal p-glycoprotein transport activity. J Pharm Sci 102:3830–3837. doi:10.1002/jps.23673

    Article  CAS  PubMed  Google Scholar 

  30. Cimolai N (2013) The potential and promise of mefenamic acid. Expert Rev Clin Pharmacol 6:289–305. doi:10.1586/ecp.13.15

    Article  CAS  PubMed  Google Scholar 

  31. Takara K, Hayashi R, Kokufu M, Yamamoto K, Kitada N, Ohnishi N, Yokoyama T (2009) Effects of nonsteroidal anti-inflammatory drugs on the expression and function of P-glycoprotein/MDR1 in Caco-2 cells. Drug Chem Toxicol 32:332–337. doi:10.1080/01480540903130658

    Article  CAS  PubMed  Google Scholar 

  32. Wiwattanawongsa K, Tantishaiyakul V, Lomlim L, Rojanasakul Y, Pinsuwan S, Keawnopparat S (2005) Experimental and computational studies of epithelial transport of mefenamic acid ester prodrugs. Pharm Res 22:721–727. doi:10.1007/s11095-005-2587-6

    Article  CAS  PubMed  Google Scholar 

  33. Mazaleuskaya LL, Theken KN, Gong L, Thorn CF, FitzGerald GA, Altman RB, Klein TE (2014) PharmGKB summary: ibuprofen pathways. Pharmacogenet Genomics. doi:10.1097/FPC.0000000000000113

    Google Scholar 

  34. Hou W-Y, Xu S-F, Zhu Q-N, Lu Y-F, Cheng X-G, Liu J (2014) Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats. Toxicol Appl Pharmacol 280:370–377. doi:10.1016/j.taap.2014.08.020

    Article  CAS  PubMed  Google Scholar 

  35. Maher JM, Slitt AL, Cherrington NJ, Cheng X, Klaassen CD (2005) Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (Mrp) family in mice. Drug Metab Dispos 33:947–955. doi:10.1124/dmd.105.003780

    Article  CAS  PubMed  Google Scholar 

  36. Breljak D, Brzica H, Sweet DH, Anzai N, Sabolic I (2013) Sex-dependent expression of Oat3 (Slc22a8) and Oat1 (Slc22a6) proteins in murine kidneys. Am J Physiol Renal Physiol 304:F1114–F1126. doi:10.1152/ajprenal.00201.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lankheet NA, Kloth JS, Gadellaa-van Hooijdonk CG, Cirkel GA, Mathijssen RH, Lolkema MP, Schellens JH, Voest EE, Sleijfer S, de Jonge MJ, Haanen JB, Beijnen JH, Huitema AD, Steeghs N (2014) Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. Br J Cancer 110:2441–2449. doi:10.1038/bjc.2014.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lankheet NAG, Knapen LM, Schellens JHM, Beijnen JH, Steeghs N, Huitema ADR (2014) Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care. Ther Drug Monit 36:326–334. doi:10.1097/FTD.0000000000000004

    Article  CAS  PubMed  Google Scholar 

  39. Gore ME, Szczylik C, Porta C, Bracarda S, Bjarnason GA, Oudard S, Lee S-H, Haanen J, Castellano D, Vrdoljak E, Schöffski P, Mainwaring P, Hawkins RE, Crinò L, Kim TM, Carteni G, Eberhardt WEE, Zhang K, Fly K, Matczak E, Lechuga MJ, Hariharan S, Bukowski R (2015) Final results from the large sunitinib global expanded-access trial in metastatic renal cell carcinoma. Br J Cancer 113:12–19. doi:10.1038/bjc.2015.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bamias A, Tzannis K, Beuselinck B, Oudard S, Escudier B, Diosynopoulos D, Papazisis K, Lang H, Wolter P, de Guillebon E, Stravodimos K, Chrisofos M, Fountzilas G, Elaidi R-T, Dimopoulos MA, Bamia C (2013) Development and validation of a prognostic model in patients with metastatic renal cell carcinoma treated with sunitinib: a European collaboration. Br J Cancer 109:332–341. doi:10.1038/bjc.2013.341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mizuno T, Fukudo M, Fukuda T, Terada T, Dong M, Kamba T, Yamasaki T, Ogawa O, Katsura T, Inui K-I, Vinks AA, Matsubara K (2014) The effect of ABCG2 genotype on the population pharmacokinetics of sunitinib in patients with renal cell carcinoma. Ther Drug Monit 36:310–316. doi:10.1097/FTD.0000000000000025

    Article  CAS  PubMed  Google Scholar 

  42. Akaza H, Naito S, Ueno N, Aoki K, Houzawa H, Pitman Lowenthal S, Lee S-Y (2015) Real-world use of sunitinib in Japanese patients with advanced renal cell carcinoma: efficacy, safety and biomarker analyses in 1689 consecutive patients. Jpn J Clin Oncol 45:576–583. doi:10.1093/jjco/hyv045

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sun T, Plutynski A, Ward S, Rubin JB (2015) An integrative view on sex differences in brain tumors. Cell Mol Life Sci 72:3323–3342. doi:10.1007/s00018-015-1930-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Narjoz C, Cessot A, Thomas-Schoemann A, Golmard JL, Huillard O, Boudou-Rouquette P, Behouche A, Taieb F, Durand JP, Dauphin A, Coriat R, Vidal M, Tod M, Alexandre J, Loriot MA, Goldwasser F, Blanchet B (2015) Role of the lean body mass and of pharmacogenetic variants on the pharmacokinetics and pharmacodynamics of sunitinib in cancer patients. Invest New Drugs 33:257–268. doi:10.1007/s10637-014-0178-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the International Medical University for financial support: B1/07-Res(09)2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Segarra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S.Y., Wong, M.M., Tiew, A.L.W. et al. Sunitinib DDI with paracetamol, diclofenac, mefenamic acid and ibuprofen shows sex-divergent effects on the tissue uptake and distribution pattern of sunitinib in mice. Cancer Chemother Pharmacol 78, 709–718 (2016). https://doi.org/10.1007/s00280-016-3120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3120-9

Keywords

Navigation