Skip to main content

Advertisement

Log in

A physiologically based pharmacokinetic (PBPK) parent-metabolite model of the chemotherapeutic zoptarelin doxorubicin—integration of in vitro results, Phase I and Phase II data and model application for drug–drug interaction potential analysis

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Zoptarelin doxorubicin is a fusion molecule of the chemotherapeutic doxorubicin and a luteinizing hormone-releasing hormone receptor (LHRHR) agonist, designed for drug targeting to LHRHR positive tumors. The aim of this study was to establish a physiologically based pharmacokinetic (PBPK) parent-metabolite model of zoptarelin doxorubicin and to apply it for drug–drug interaction (DDI) potential analysis.

Methods

The PBPK model was built in a two-step procedure. First, a model for doxorubicin was developed, using clinical data of a doxorubicin study arm. Second, a parent-metabolite model for zoptarelin doxorubicin was built, using clinical data of three different zoptarelin doxorubicin studies with a dosing range of 10–267 mg/m2, integrating the established doxorubicin model. DDI parameters determined in vitro were implemented to predict the impact of zoptarelin doxorubicin on possible victim drugs.

Results

In vitro, zoptarelin doxorubicin inhibits the drug transporters organic anion-transporting polypeptide 1B3 (OATP1B3) and organic cation transporter 2 (OCT2). The model was applied to evaluate the in vivo inhibition of these transporters in a generic manner, predicting worst-case scenario decreases of 0.5% for OATP1B3 and of 2.5% for OCT2 transport rates. Specific DDI simulations using PBPK models of simvastatin (OATP1B3 substrate) and metformin (OCT2 substrate) predict no significant changes of the plasma concentrations of these two victim drugs during co-administration.

Conclusions

The first whole-body PBPK model of zoptarelin doxorubicin and its active metabolite doxorubicin has been successfully established. Zoptarelin doxorubicin shows no potential for DDIs via OATP1B3 and OCT2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagy A, Schally A, Armatis P, Szepeshazi K, Halmos G, Kovacs M, Zarandi M, Groot K, Miyazaki M, Jungwirth A, Horvath J (1996) Cytotoxic analogs of luteinizing hormone-releasing hormone containing doxorubicin or 2-pyrrolinodoxorubicin, a derivative 500–1000 times more potent. Proc Natl Acad Sci USA 93:7269–7273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Westphalen S, Kotulla G, Kaiser F, Krauss W, Werning G, Elsasser HP, Nagy A, Schulz KD, Gründker C, Schally A, Emons G (2000) Receptor mediated antiproliferative effects of the cytotoxic LHRH agonist AN-152 in human ovarian and endometrial cancer cell lines. Int J Oncol 17:1063–1069

    CAS  PubMed  Google Scholar 

  3. Krebs LJ, Wang X, Nagy A, Schally A, Rasad PN, Liebowa C (2002) A conjugate of doxorubicin and an analog of Luteinizing hormone-releasing hormone shows increased efficacy against oral and laryngeal cancers. Oral Oncol 38:657–663

    Article  PubMed  Google Scholar 

  4. Gründker C, Völker P, Griesinger F, Ramaswamy A, Nagy A, Schally A, Emons G (2002) Antitumor effects of the cytotoxic luteinizing hormone-releasing hormone analog AN-152 on human endometrial and ovarian cancers xenografted into nude mice. Am J Obstet Gynecol 187:528–537

    Article  PubMed  Google Scholar 

  5. Szepeshazi K, Schally A, Keller G, Block NL, Benten D, Halmos G, Szalontay L, Vidaurre I, Rick FG (2012) Receptor-targeted therapy of human experimental urinary bladder cancers with cytotoxic LH-RH analog AN-152 (AEZS-108). Oncotarget 3:686–699

    Article  PubMed  PubMed Central  Google Scholar 

  6. Emons G, Gorchev G, Harter P, Wimberger P, Stähle A, Hanker L, Hilpert F, Beckmann MW, Dall P, Gründker C, Sindermann H, Sehouli J (2014) Efficacy and safety of AEZS-108 (LHRH agonist linked to doxorubicin) in women with advanced or recurrent endometrial cancer expressing LHRH receptors: a multicenter phase 2 trial (AGO-GYN5). Int J Gynecol Cancer 24:260–265

    Article  PubMed  PubMed Central  Google Scholar 

  7. Emons G, Gorchev G, Sehouli J, Wimberger P, Stähle A, Hanker L, Hilpert F, Sindermann H, Gründker C, Harter P (2014) Efficacy and safety of AEZS-108 (INN: zoptarelin doxorubicin acetate) an LHRH agonist linked to doxorubicin in women with platinum refractory or resistant ovarian cancer expressing LHRH receptors: a multicenter phase II trial of the ago-study group. Gynecol Oncol 133:427–432

    Article  CAS  PubMed  Google Scholar 

  8. Emons G, Kaufmann M, Gorchev G, Tsekova V, Gründker C, Günthert AR, Hanker LC, Velikova M, Sindermann H, Engel J, Schally A (2010) Dose escalation and pharmacokinetic study of AEZS-108 (AN-152), an LHRH agonist linked to doxorubicin, in women with LHRH receptor-positive tumors. Gynecol Oncol 119:457–461

    Article  CAS  PubMed  Google Scholar 

  9. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65:157–170

    Article  CAS  PubMed  Google Scholar 

  10. Pfizer Inc (2011) Doxorubicin prescribing information. Pfizer Inc, New York

    Google Scholar 

  11. Speth PAJ, Van Hoesel Q, Haanen C (1988) Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet 15:15–31

    Article  CAS  PubMed  Google Scholar 

  12. Food US and Drug Administration—Center for Drug Evaluation and Research (2016) Physiologically based pharmacokinetic analyses—format and content. Draft Guidance for Industry

  13. European Medicines Agency (2016) Guideline on the qualification and reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation

  14. Yao F, Duan J, Wang Y, Zhang Y, Guo Y, Guo H, Kang X (2015) Nanopore single-molecule analysis of DNA-doxorubicin interactions. Anal Chem 87:338–342

    Article  CAS  PubMed  Google Scholar 

  15. Speth PA, Linssen PC, Holdrinet RS, Haanen C (1987) Plasma and cellular adriamycin concentrations in patients with myeloma treated with ninety-six-hour continuous infusion. Clin Pharmacol Ther 41:661–665

    Article  CAS  PubMed  Google Scholar 

  16. Speth PA, Linssen PC, Boezeman JB, Wessels HM, Haanen C (1987) Cellular and plasma adriamycin concentrations in long-term infusion therapy of leukemia patients. Cancer Chemother Pharmacol 20:305–310

    CAS  PubMed  Google Scholar 

  17. Durmus S, Naik J, Buil L, Wagenaar E, Van Tellingen O, Schinkel AH (2014) In vivo disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. Int J Cancer 135:1700–1710

    Article  CAS  PubMed  Google Scholar 

  18. American Society of Health-System Pharmacists (2009) AHFS drug information. American Society of Health-System Pharmacists, Bethesda

    Google Scholar 

  19. Schang AL, Quérat B, Simon V, Garrel G, Bleux C, Counis R, Cohen-Tannoudji J, Laverrière JN (2012) Mechanisms underlying the tissue-specific and regulated activity of the Gnrhr promoter in mammals. Front Endocrinol (Lausanne) 3:162

    Google Scholar 

  20. Aguilar-Rojas A, Huerta-Reyes M (2009) Human gonadotropin-releasing hormone receptor-activated cellular functions and signaling pathways in extra-pituitary tissues and cancer cells. Oncol Rep 22:981–990

    Article  CAS  PubMed  Google Scholar 

  21. Halmos G, Nagy A, Lamharzi N, Schally A (1999) Cytotoxic analogs of luteinizing hormone-releasing hormone bind with high affinity to human breast cancers. Cancer Lett 136:129–136

    Article  CAS  PubMed  Google Scholar 

  22. Cho N, Harada M, Imaeda T, Imada T, Matsumoto H, Hayase Y, Sasaki S, Furuya S, Suzuki N, Okubo S, Ogi K, Endo S, Onda H, Fujino M (1998) Discovery of a novel, potent, and orally active nonpeptide antagonist of the human luteinizing hormone-releasing hormone (LHRH) receptor. J Med Chem 41:4190–4195

    Article  CAS  PubMed  Google Scholar 

  23. Valentin J (2002) Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP 32:1–277

    Article  Google Scholar 

  24. Miller DS, Gabra H, Emons G, McMeekin DS, Oza AM, Temkin SM, Vergote I (2014) ZoptEC: Phase III study of zoptarelin doxorubicin (AEZS-108) in platinum-taxane pretreated endometrial cancer (Study AEZS-108–050). J Clin Oncol 32:15 (suppl)

    Google Scholar 

  25. König J, Cui Y, Nies AT, Keppler D (2000) Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem 275:23161–23168

    Article  PubMed  Google Scholar 

  26. Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch Eur J Physiol 447:666–676

    Article  CAS  Google Scholar 

  27. Gui C, Miao Y, Thompson L, Wahlgren B, Mock M, Stieger B, Hagenbuch B (2008) Effect of pregnane X receptor ligands on transport mediated by human OATP1B1 and OATP1B3. Eur J Pharmacol 584:57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, Inui K (2005) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 20:379–386

    Article  CAS  PubMed  Google Scholar 

  29. Yung-Chi C, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  Google Scholar 

  30. Rodrigues AD (2008) Drug-drug interactions, 2nd edn. CRC Press, Taylor and Francis, Boca Raton

    Google Scholar 

  31. Food US and Drug Administration (2012) Drug interaction studies—Study design, data analysis, implications for dosing, and labeling recommendations. Draft Guidance for Industry

  32. Kunze A, Huwyler J, Camenisch G, Poller B (2014) Prediction of organic anion-transporting polypeptide 1B1- and 1B3-mediated hepatic uptake of statins based on transporter protein expression and activity data. Drug Metab Dispos 42:1514–1521

    Article  PubMed  Google Scholar 

  33. Terasaki T, Iga T, Sugiyama Y, Hanano M (1982) Experimental evidence of characteristic tissue distribution of adriamycin. Tissue DNA concentration as a determinant. J Pharm Pharmacol 34:597–600

    Article  CAS  PubMed  Google Scholar 

  34. Pfizer Inc (2013) Doxorubicin prescribing information. Pfizer Inc, New York

    Google Scholar 

  35. Gustafson DL, Rastatter JC, Colombo T, Long ME (2002) Doxorubicin pharmacokinetics: macromolecule binding, metabolism, and excretion in the context of a physiologic model. J Pharm Sci 91:1488–1501

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Gwilt PR (2003) The effect of age on the early disposition of doxorubicin. Cancer Chemother Pharmacol 51:395–402

    CAS  PubMed  Google Scholar 

  37. Hu L, Au JLS, Wientjes MG (2007) Computational modeling to predict effect of treatment schedule on drug delivery to prostate in humans. Clin Cancer Res 13:1278–1287

    Article  CAS  PubMed  Google Scholar 

  38. Dubbelboer IR, Lilienberg E, Sjögren E, Lennernäs H (2017) A model-based approach to assessing the importance of intracellular binding sites in doxorubicin disposition. Mol Pharm 14:686–698

    Article  CAS  PubMed  Google Scholar 

  39. Goormaghtigh E, Chatelain P, Caspers J, Ruysschaert JM (1980) Evidence of a complex between adriamycin derivatives and cardiolipin: possible role in cardiotoxicity. Biochem Pharmacol 29:3003–3010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the patients that participated in the clinical studies and the medical staff involved in patient care and study execution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Lehr.

Ethics declarations

Funding

This study was funded by Aeterna Zentaris.

Conflict of interest

Nina Hanke, Daniel Moj, Jan-Georg Wojtyniak and Hannah Britz declare that they have no conflict of interest. Michael Teifel, Babette Aicher, Herbert Sindermann and Nicola Ammer are employees of Aeterna Zentaris. Thorsten Lehr has received research grants from Aeterna Zentaris.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanke, N., Teifel, M., Moj, D. et al. A physiologically based pharmacokinetic (PBPK) parent-metabolite model of the chemotherapeutic zoptarelin doxorubicin—integration of in vitro results, Phase I and Phase II data and model application for drug–drug interaction potential analysis. Cancer Chemother Pharmacol 81, 291–304 (2018). https://doi.org/10.1007/s00280-017-3495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3495-2

Keywords

Navigation