Skip to main content

Advertisement

Log in

Learning from other diseases: protection and pathology in chronic fungal infections

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Fungal commensals coexist in a complex milieu of bacteria within the human body. An increased understanding of the importance of microbiota in shaping the host’s immune and metabolic activities has rendered fungal interactions with their hosts more complex than previously appreciated. Metagenomics has revealed the complex interactions between fungal and bacterial commensals that, either directly or through the participation of the host immune system, impact on immune homeostasis at mucosal surfaces that, in turn, lead to secondary fungal infections. Metabolomics has captured the dialogue between the mammalian host and its microbiota. It appears that the host tryptophan catabolic enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) plays a dominant role in the interplay between tryptophan catabolism by microbial communities, the host’s own pathway of metabolite production, and the activation of the aryl hydrocarbon receptor (AhR)/IL-22 axis, eventually impacting on mucosal immune homeostasis and host/fungal symbiosis. Thus, the regulatory loop involving AhR and IDO1 may be exploited for the development of multi-pronged host- and microbiota-directed therapeutic approaches for mucosal and systemic fungal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11(4):275–288. doi:10.1038/nri2939

    Article  CAS  PubMed  Google Scholar 

  2. Segal BH, Herbrecht R, Stevens DA, Ostrosky-Zeichner L, Sobel J, Viscoli C, Walsh TJ, Maertens J, Patterson TF, Perfect JR, Dupont B, Wingard JR, Calandra T, Kauffman CA, Graybill JR, Baden LR, Pappas PG, Bennett JE, Kontoyiannis DP, Cordonnier C, Viviani MA, Bille J, Almyroudis NG, Wheat LJ, Graninger W, Bow EJ, Holland SM, Kullberg BJ, Dismukes WE, De Pauw BE (2008) Defining responses to therapy and study outcomes in clinical trials of invasive fungal diseases: Mycoses Study Group and European Organization for Research and Treatment of Cancer consensus criteria. Clin Infect Dis 47:674–683. doi:10.1086/590566

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21:334–341. doi:10.1016/j.tim.2013.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5:63. doi:10.1186/gm467

    Article  PubMed  PubMed Central  Google Scholar 

  5. Romani L, Zelante T, De Luca A, Iannitti RG, Moretti S, Bartoli A, Aversa F, Puccetti P (2014) Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi. Eur J Immunol 44:3192–3200. doi:10.1002/eji.201344406

    Article  CAS  PubMed  Google Scholar 

  6. Schelenz S, Barnes RA, Barton RC, Cleverley JR, Lucas SB, Kibbler CC, Denning DW, British Society for Medical M (2015) British Society for Medical Mycology best practice recommendations for the diagnosis of serious fungal diseases. Lancet Infect Dis 15:461–474. doi:10.1016/S1473-3099(15)70006-X

    Article  PubMed  Google Scholar 

  7. Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–416. doi:10.1038/nri3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seed PC (2014) The Human Mycobiome. Cold Spring Harb Perspect Med 5. doi:10.1101/cshperspect.a019810

  9. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6, e1000713. doi:10.1371/journal.ppat.1000713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ott SJ, Kuhbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, Drews O, Weichert W, Timmis KN, Schreiber S (2008) Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol 43:831–841. doi:10.1080/00365520801935434

    Article  CAS  PubMed  Google Scholar 

  11. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8, e66019. doi:10.1371/journal.pone.0066019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mukherjee PK, Sendid B, Hoarau G, Colombel JF, Poulain D, Ghannoum MA (2015) Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 12:77–87. doi:10.1038/nrgastro.2014.188

    Article  PubMed  Google Scholar 

  13. Chen Y, Chen Z, Guo R, Chen N, Lu H, Huang S, Wang J, Li L (2011) Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn Microbiol Infect Dis 70:492–498. doi:10.1016/j.diagmicrobio.2010.04.005

    Article  PubMed  Google Scholar 

  14. Nguyen LD, Viscogliosi E, Delhaes L (2015) The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol 6:89. doi:10.3389/fmicb.2015.00089

    PubMed  PubMed Central  Google Scholar 

  15. Dickson RP, Martinez FJ, Huffnagle GB (2014) The role of the microbiome in exacerbations of chronic lung diseases. Lancet 384:691–702. doi:10.1016/S0140-6736(14)61136-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen YE, Tsao H (2013) The skin microbiome: current perspectives and future challenges. J Am Acad Dermatol 69:143–155. doi:10.1016/j.jaad.2013.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma B, Forney LJ, Ravel J (2012) Vaginal microbiome: rethinking health and disease. Annu Rev Microbiol 66:371–389. doi:10.1146/annurev-micro-092611-150157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Diaz PI, Strausbaugh LD, Dongari-Bagtzoglou A (2014) Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front Cell Infect Microbiol 4:101. doi:10.3389/fcimb.2014.00101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tung JM, Dolovich LR, Lee CH (2009) Prevention of Clostridium difficile infection with Saccharomyces boulardii: a systematic review. Can J Gastroenterol 23:817–821

    PubMed  PubMed Central  Google Scholar 

  20. Gerard R, Sendid B, Colombel JF, Poulain D, Jouault T (2015) An immunological link between Candida albicans colonization and Crohn’s disease. Crit Rev Microbiol 41:135–139. doi:10.3109/1040841X.2013.810587

    Article  CAS  PubMed  Google Scholar 

  21. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, Rotter JI, Wang HL, McGovern DP, Brown GD, Underhill DM (2012) Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science 336:1314–1317. doi:10.1126/science.1221789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moyes DL, Naglik JR (2012) The mycobiome: influencing IBD severity. Cell Host Microbe 11:551–552. doi:10.1016/j.chom.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  23. Bonifazi P, Zelante T, D’Angelo C, De Luca A, Moretti S, Bozza S, Perruccio K, Iannitti RG, Giovannini G, Volpi C, Fallarino F, Puccetti P, Romani L (2009) Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol 2:362–374. doi:10.1038/mi.2009.17

    Article  CAS  PubMed  Google Scholar 

  24. Delhaes L, Monchy S, Frealle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, Wallaert B, Dei-Cas E, Sime-Ngando T, Chabe M, Viscogliosi E (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS One 7, e36313. doi:10.1371/journal.pone.0036313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smeekens SP, Malireddi RK, Plantinga TS, Buffen K, Oosting M, Joosten LA, Kullberg BJ, Perfect JR, Scott WK, van de Veerdonk FL, Xavier RJ, van de Vosse E, Kanneganti TD, Johnson MD, Netea MG (2014) Autophagy is redundant for the host defense against systemic Candida albicans infections. Eur J Clin Microbiol Infect Dis 33:711–722. doi:10.1007/s10096-013-2002-x

    Article  CAS  PubMed  Google Scholar 

  26. Standaert-Vitse A, Sendid B, Joossens M, Francois N, Vandewalle-El Khoury P, Branche J, Van Kruiningen H, Jouault T, Rutgeerts P, Gower-Rousseau C, Libersa C, Neut C, Broly F, Chamaillard M, Vermeire S, Poulain D, Colombel JF (2009) Candida albicans colonization and ASCA in familial Crohn’s disease. Am J Gastroenterol 104:1745–1753. doi:10.1038/ajg.2009.225

    Article  CAS  PubMed  Google Scholar 

  27. Noverr MC, Noggle RM, Toews GB, Huffnagle GB (2004) Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 72:4996–5003. doi:10.1128/IAI.72.9.4996-5003.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gaitanis G, Velegraki A, Mayser P, Bassukas ID (2013) Skin diseases associated with Malassezia yeasts: facts and controversies. Clin Dermatol 31:455–463. doi:10.1016/j.clindermatol.2013.01.012

    Article  PubMed  Google Scholar 

  29. Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, Tsutsui Y, Qin H, Honda K, Okada T, Hattori M, Fagarasan S (2014) Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41:152–165. doi:10.1016/j.immuni.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  30. Oever JT, Netea MG (2014) The bacteriome-mycobiome interaction and antifungal host defense. Eur J Immunol 44:3182–3191. doi:10.1002/eji.201344405

    Article  PubMed  CAS  Google Scholar 

  31. Kalo-Klein A, Witkin SS (1990) Prostaglandin E2 enhances and gamma interferon inhibits germ tube formation in Candida albicans. Infect Immun 58:260–262

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zelante T, Iannitti RG, De Luca A, Arroyo J, Blanco N, Servillo G, Sanglard D, Reichard U, Palmer GE, Latge JP, Puccetti P, Romani L (2012) Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat Commun 3:683. doi:10.1038/ncomms1685

    Article  PubMed  CAS  Google Scholar 

  33. Perfect JR (2012) The impact of the host on fungal infections. Am J Med 125:S39–S51

    Article  CAS  PubMed  Google Scholar 

  34. Romani L, Fallarino F, De Luca A, Montagnoli C, D’Angelo C, Zelante T, Vacca C, Bistoni F, Fioretti MC, Grohmann U, Segal BH, Puccetti P (2008) Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451:211–215. doi:10.1038/nature06471

    Article  CAS  PubMed  Google Scholar 

  35. Iannitti RG, Carvalho A, Cunha C, De Luca A, Giovannini G, Casagrande A, Zelante T, Vacca C, Fallarino F, Puccetti P, Massi-Benedetti C, Defilippi G, Russo M, Porcaro L, Colombo C, Ratclif L, De Benedictis FM, Romani L (2013) Th17/Treg imbalance in murine cystic fibrosis is linked to indoleamine 2,3-dioxygenase deficiency but corrected by kynurenines. Am J Respir Crit Care Med 187:609–620. doi:10.1164/rccm.201207-1346OC

    Article  CAS  PubMed  Google Scholar 

  36. Legrand F, Lecuit M, Dupont B, Bellaton E, Huerre M, Rohrlich PS, Lortholary O (2008) Adjuvant corticosteroid therapy for chronic disseminated candidiasis. Clin Infect Dis 46:696–702. doi:10.1086/527390

    Article  CAS  PubMed  Google Scholar 

  37. Singh N, Perfect JR (2007) Immune reconstitution syndrome associated with opportunistic mycoses. Lancet Infect Dis 7:395–401

    Article  PubMed  Google Scholar 

  38. Casadevall A, Pirofski LA (2003) The damage-response framework of microbial pathogenesis. Nat Rev Microbiol 1:17–24. doi:10.1038/nrmicro732

    Article  CAS  PubMed  Google Scholar 

  39. Wuthrich M, Deepe GS Jr, Klein B (2012) Adaptive immunity to fungi. Annu Rev Immunol 30:115–148. doi:10.1146/annurev-immunol-020711-074958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vinh DC, Patel SY, Uzel G, Anderson VL, Freeman AF, Olivier KN, Spalding C, Hughes S, Pittaluga S, Raffeld M, Sorbara LR, Elloumi HZ, Kuhns DB, Turner ML, Cowen EW, Fink D, Long-Priel D, Hsu AP, Ding L, Paulson ML, Whitney AR, Sampaio EP, Frucht DM, DeLeo FR, Holland SM (2010) Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood 115:1519–1529. doi:10.1182/blood-2009-03-208629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, Frucht DM, Vinh DC, Auth RD, Freeman AF, Olivier KN, Uzel G, Zerbe CS, Spalding C, Pittaluga S, Raffeld M, Kuhns DB, Ding L, Paulson ML, Marciano BE, Gea-Banacloche JC, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM (2011) Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118:2653–2655. doi:10.1182/blood-2011-05-356352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lionakis MS (2012) Genetic susceptibility to fungal infections in humans. Curr Fungal Infect Rep 6:11–22. doi:10.1007/s12281-011-0076-4

    Article  PubMed  PubMed Central  Google Scholar 

  43. van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LA, Gilissen C, Arts P, Rosentul DC, Carmichael AJ, Smits-van der Graaf CA, Kullberg BJ, van der Meer JW, Lilic D, Veltman JA, Netea MG (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365:54–61. doi:10.1056/NEJMoa1100102

    Article  PubMed  Google Scholar 

  44. Puel A, Cypowyj S, Marodi L, Abel L, Picard C, Casanova JL (2012) Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol 12:616–622. doi:10.1097/ACI.0b013e328358cc0b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O’Shea J, Holland SM, Paul WE, Douek DC (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ouederni M, Sanal O, Ikinciogullari A, Tezcan I, Dogu F, Sologuren I, Pedraza-Sanchez S, Keser M, Tanir G, Nieuwhof C, Colino E, Kumararatne D, Levy J, Kutukculer N, Aytekin C, Herrera-Ramos E, Bhatti M, Karaca N, Barbouche R, Broides A, Goudouris E, Franco JL, Parvaneh N, Reisli I, Strickler A, Shcherbina A, Somer A, Segal A, Angel-Moreno A, Lezana-Fernandez JL, Bejaoui M, Bobadilla-Del Valle M, Kachboura S, Sentongo T, Ben-Mustapha I, Bustamante J, Picard C, Puel A, Boisson-Dupuis S, Abel L, Casanova JL, Rodriguez-Gallego C (2014) Clinical features of Candidiasis in patients with inherited interleukin 12 receptor beta1 deficiency. Clin Infect Dis 58:204–213. doi:10.1093/cid/cit722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ryan KR, Hong M, Arkwright PD, Gennery AR, Costigan C, Dominguez M, Denning D, McConnell V, Cant AJ, Abinun M, Spickett GP, Lilic D (2008) Impaired dendritic cell maturation and cytokine production in patients with chronic mucocutanous candidiasis with or without APECED. Clin Exp Immunol 154:406–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, Alzahrani M, Al-Muhsen S, Halwani R, Ma CS, Wong N, Soudais C, Henderson LA, Marzouqa H, Shamma J, Gonzalez M, Martinez-Barricarte R, Okada C, Avery DT, Latorre D, Deswarte C, Jabot-Hanin F, Torrado E, Fountain J, Belkadi A, Itan Y, Boisson B, Migaud M, Arlehamn CS, Sette A, Breton S, McCluskey J, Rossjohn J, de Villartay JP, Moshous D, Hambleton S, Latour S, Arkwright PD, Picard C, Lantz O, Engelhard D, Kobayashi M, Abel L, Cooper AM, Notarangelo LD, Boisson-Dupuis S, Puel A, Sallusto F, Bustamante J, Tangye SG, Casanova JL (2015) IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349:606–613. doi:10.1126/science.aaa4282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine 79:170–200

    Article  CAS  PubMed  Google Scholar 

  50. Rosenzweig SD, Holland SM (2005) Defects in the interferon-gamma and interleukin-12 pathways. Immunol Rev 203:38–47. doi:10.1111/j.0105-2896.2005.00227.x

    Article  CAS  PubMed  Google Scholar 

  51. Rezai MS, Khotael G, Kheirkhah M, Hedayat T, Geramishoar M, Mahjoub F (2008) Cryptococcosis and deficiency of interleukin12r. Pediatr Infect Dis J 27:673. doi:10.1097/INF.0b013e318179263a

    Article  PubMed  Google Scholar 

  52. Cheng SC, van de Veerdonk F, Smeekens S, Joosten LA, van der Meer JW, Kullberg BJ, Netea MG (2010) Candida albicans dampens host defense by downregulating IL-17 production. J Immunol 185:2450–2457

    Article  CAS  PubMed  Google Scholar 

  53. Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, Bistoni F, Puccetti P, Kastelein RA, Kopf M, Romani L (2007) IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 37:2695–2706. doi:10.1002/eji.200737409

    Article  CAS  PubMed  Google Scholar 

  54. Loures FV, Pina A, Felonato M, Calich VL (2009) TLR2 is a negative regulator of Th17 cells and tissue pathology in a pulmonary model of fungal infection. J Immunol 183:1279–1290

    Article  CAS  PubMed  Google Scholar 

  55. Romani L, Zelante T, De Luca A, Fallarino F, Puccetti P (2008) IL-17 and therapeutic kynurenines in pathogenic inflammation to fungi. J Immunol 180:5157–5162

    Article  CAS  PubMed  Google Scholar 

  56. Ahlgren KM, Moretti S, Ardesjö Lundgren B, Karlsson I, Åhlin E, Norling A, Hallgren Å, Perheentupa J, Gustafsson J, Rorsman F, Crewther PE, Rönnelid J, Bensing S, Scott HS, Kämpe O, Romani L, Lobell A (2011) Increased IL-17A secretion in response to Candida albicans in autoimmune polyendocrine syndrome type 1 and its animal model. Eur J Immunol 41:235–245

    Article  CAS  PubMed  Google Scholar 

  57. Kreindler JL, Steele C, Nguyen N, Chan YR, Pilewski JM, Alcorn JF, Vyas YM, Aujla SJ, Finelli P, Blanchard M, Zeigler SF, Logar A, Hartigan E, Kurs-Lasky M, Rockette H, Ray A, Kolls JK (2010) Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. J Clin Invest 120:3242–3254. doi:10.1172/JCI42388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wiesner DL, Specht CA, Lee CK, Smith KD, Mukaremera L, Lee ST, Lee CG, Elias JA, Nielsen JN, Boulware DR, Bohjanen PR, Jenkins MK, Levitz SM, Nielsen K (2015) Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog 11, e1004701. doi:10.1371/journal.ppat.1004701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bozzi A, Reis BS, Pereira PP, Pedroso EP, Goes AM (2009) Interferon-gamma and interleukin-4 single nucleotide gene polymorphisms in paracoccidioidomycosis. Cytokine 48:212–217. doi:10.1016/j.cyto.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  60. Bhatia S, Fei M, Yarlagadda M, Qi Z, Akira S, Saijo S, Iwakura Y, van Rooijen N, Gibson GA, St Croix CM, Ray A, Ray P (2011) Rapid host defense against Aspergillus fumigatus involves alveolar macrophages with a predominance of alternatively activated phenotype. PLoS One 6, e15943. doi:10.1371/journal.pone.0015943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guimaraes AJ, Frases S, Gomez FJ, Zancope-Oliveira RM, Nosanchuk JD (2009) Monoclonal antibodies to heat shock protein 60 alter the pathogenesis of Histoplasma capsulatum. Infect Immun 77:1357–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McClelland EE, Nicola AM, Prados-Rosales R, Casadevall A (2010) Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J Clin Invest 120:1355–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaplan MH (2013) Th9 cells: differentiation and disease. Immunol Rev 252:104–115. doi:10.1111/imr.12028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Schlapbach C, Gehad A, Yang C, Watanabe R, Guenova E, Teague JE, Campbell L, Yawalkar N, Kupper TS, Clark RA (2014) Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci Transl Med 6:219ra218. doi:10.1126/scitranslmed.3007828

    Article  CAS  Google Scholar 

  65. Sabat R, Ouyang W, Wolk K (2014) Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov 13:21–38. doi:10.1038/nrd4176

    Article  CAS  PubMed  Google Scholar 

  66. De Luca A, Zelante T, D’Angelo C, Zagarella S, Fallarino F, Spreca A, Iannitti RG, Bonifazi P, Renauld JC, Bistoni F, Puccetti P, Romani L (2010) IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol 3:361–373

    Article  PubMed  CAS  Google Scholar 

  67. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F, Carvalho A, Puccetti P, Romani L (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385. doi:10.1016/j.immuni.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  68. Liu Y, Yang B, Zhou M, Li L, Zhou H, Zhang J, Chen H, Wu C (2009) Memory IL-22-producing CD4+ T cells specific for Candida albicans are present in humans. Eur J Immunol 39:1472–1479. doi:10.1002/eji.200838811

    Article  CAS  PubMed  Google Scholar 

  69. De Luca A, Carvalho A, Cunha C, Iannitti RG, Pitzurra L, Giovannini G, Mencacci A, Bartolommei L, Moretti S, Massi-Benedetti C, Fuchs D, De Bernardis F, Puccetti P, Romani L (2013) IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog 9, e1003486. doi:10.1371/journal.ppat.1003486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Gresnigt MS, Becker KL, Smeekens SP, Jacobs CW, Joosten LA, van der Meer JW, Netea MG, van de Veerdonk FL (2013) Aspergillus fumigatus-induced IL-22 is not restricted to a specific Th cell subset and is dependent on complement receptor 3. J Immunol 190:5629–5639. doi:10.4049/jimmunol.1202601

    Article  CAS  PubMed  Google Scholar 

  71. Gessner MA, Werner JL, Lilly LM, Nelson MP, Metz AE, Dunaway CW, Chan YR, Ouyang W, Brown GD, Weaver CT, Steele C (2012) Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect Immun 80(1):410–417. doi:10.1128/IAI.05939-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lilly LM, Gessner MA, Dunaway CW, Metz AE, Schwiebert L, Weaver CT, Brown GD, Steele C (2012) The beta-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. J Immunol 189:3653–3660. doi:10.4049/jimmunol.1201797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bacher P, Kniemeyer O, Schonbrunn A, Sawitzki B, Assenmacher M, Rietschel E, Steinbach A, Cornely OA, Brakhage AA, Thiel A, Scheffold A (2014) Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunol 7:916–928. doi:10.1038/mi.2013.107

    CAS  PubMed  Google Scholar 

  74. Bedke T, Iannitti RG, De Luca A, Giovannini G, Fallarino F, Berges C, Latge JP, Einsele H, Romani L, Topp MS (2014) Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and Foxp3 regulatory T cells in humans and mice. Immunol Cell Biol 92:659–670. doi:10.1038/icb.2014.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pandiyan P, Conti HR, Zheng L, Peterson AC, Mathern DR, Hernandez-Santos N, Edgerton M, Gaffen SL, Lenardo MJ (2011) CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity 34:422–434. doi:10.1016/j.immuni.2011.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Romani L, Puccetti P (2006) Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. Trends Microbiol 14:183–189

    Article  CAS  PubMed  Google Scholar 

  77. Seo KW, Kim DH, Sohn SK, Lee NY, Chang HH, Kim SW, Jeon SB, Baek JH, Kim JG, Suh JS, Lee KB (2005) Protective role of interleukin-10 promoter gene polymorphism in the pathogenesis of invasive pulmonary aspergillosis after allogeneic stem cell transplantation. Bone Marrow Transplant 36:1089–1095. doi:10.1038/sj.bmt.1705181

    Article  CAS  PubMed  Google Scholar 

  78. Bozzi A, Pereira PP, Reis BS, Goulart MI, Pereira MC, Pedroso EP, Leite MF, Goes AM (2006) Interleukin-10 and tumor necrosis factor-alpha single nucleotide gene polymorphism frequency in paracoccidioidomycosis. Hum Immunol 67:931–939. doi:10.1016/j.humimm.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  79. Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW (2007) CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 119:482–487. doi:10.1016/j.jaci.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  80. Ohshima M, Futamura M, Kamachi Y, Ito K, Sakamoto T (2009) Allergic bronchopulmonary aspergillosis in a 2-year-old asthmatic boy with immune dysregulation, polyendocrinopathy, enteropathy, X-linked. Pediatr Pulmonol 44:297–299. doi:10.1002/ppul.20992

    Article  PubMed  Google Scholar 

  81. Verbsky JW, Chatila TA (2011) T-regulatory cells in primary immune deficiencies. Curr Opin Allergy Clin Immunol 11:539–544. doi:10.1097/ACI.0b013e32834cb8fa

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kluger N, Ranki A, Krohn K (2012) APECED: is this a model for failure of T cell and B cell tolerance? Front Immunol 3:232. doi:10.3389/fimmu.2012.00232

    Article  PubMed  PubMed Central  Google Scholar 

  83. De Luca A, Montagnoli C, Zelante T, Bonifazi P, Bozza S, Moretti S, D’Angelo C, Vacca C, Boon L, Bistoni F, Puccetti P, Fallarino F, Romani L (2007) Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J Immunol 179:5999–6008

    Article  PubMed  Google Scholar 

  84. Carvalho A, De Luca A, Bozza S, Cunha C, D’Angelo C, Moretti S, Perruccio K, Iannitti RG, Fallarino F, Pierini A, Latge JP, Velardi A, Aversa F, Romani L (2012) TLR3 essentially promotes protective class I-restricted memory CD8(+) T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood 119:967–977. doi:10.1182/blood-2011-06-362582

    Article  CAS  PubMed  Google Scholar 

  85. Nahum A, Dadi H, Bates A, Roifman CM (2011) The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J Allergy Clin Immunol 127:528–531. doi:10.1016/j.jaci.2010.09.031

    Article  CAS  PubMed  Google Scholar 

  86. de Luca A, Bozza S, Zelante T, Zagarella S, D’Angelo C, Perruccio K, Vacca C, Carvalho A, Cunha C, Aversa F, Romani L (2010) Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO. Cell Mol Immunol 7:459–470. doi:10.1038/cmi.2010.43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774. doi:10.1038/nri1457

    Article  CAS  PubMed  Google Scholar 

  88. Puccetti P, Grohmann U (2007) IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. Nat Rev Immunol 7:817–823. doi:10.1038/nri2163

    Article  CAS  PubMed  Google Scholar 

  89. Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34:137–143. doi:10.1016/j.it.2012.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zelante T, Fallarino F, Bistoni F, Puccetti P, Romani L (2009) Indoleamine 2,3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes Infect 11:133–141. doi:10.1016/j.micinf.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  91. Jaronen M, Quintana FJ (2014) Immunological relevance of the coevolution of IDO1 and AHR. Front Immunol 5:521. doi:10.3389/fimmu.2014.00521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Grohmann U, Puccetti P (2015) The coevolution of IDO1 and AhR in the emergence of regulatory T-cells in mammals. Front Immunol 6:58. doi:10.3389/fimmu.2015.00058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, Bicciato S, Mazza EM, Macchiarulo A, Vacca C, Iannitti R, Tissi L, Volpi C, Belladonna ML, Orabona C, Bianchi R, Lanz TV, Platten M, Della Fazia MA, Piobbico D, Zelante T, Funakoshi H, Nakamura T, Gilot D, Denison MS, Guillemin GJ, DuHadaway JB, Prendergast GC, Metz R, Geffard M, Boon L, Pirro M, Iorio A, Veyret B, Romani L, Grohmann U, Fallarino F, Puccetti P (2014) Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511:184–190. doi:10.1038/nature13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Austin CJ, Rendina LM (2015) Targeting key dioxygenases in tryptophan-kynurenine metabolism for immunomodulation and cancer chemotherapy. Drug Discov Today 20:609–617. doi:10.1016/j.drudis.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  95. Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH (2009) Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol 41:467–471. doi:10.1016/j.biocel.2008.01.005

    Article  CAS  PubMed  Google Scholar 

  96. Williams Z (2012) Inducing tolerance to pregnancy. N Engl J Med 367:1159–1161. doi:10.1056/NEJMcibr1207279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761

    Article  CAS  PubMed  Google Scholar 

  98. Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, Trauner A, Wallis D, Galaviz S, Huttenhower C, Sacchettini JC, Behar SM, Rubin EJ (2013) Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155:1296–1308. doi:10.1016/j.cell.2013.10.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grohmann U, Volpi C, Fallarino F, Bozza S, Bianchi R, Vacca C, Orabona C, Belladonna ML, Ayroldi E, Nocentini G, Boon L, Bistoni F, Fioretti MC, Romani L, Riccardi C, Puccetti P (2007) Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13:579–586. doi:10.1038/nm1563

    Article  CAS  PubMed  Google Scholar 

  100. Yuasa HJ, Ball HJ (2013) Indoleamine 2,3-dioxygenases with very low catalytic activity are well conserved across kingdoms: IDOs of Basidiomycota. Fungal Genet Biol 56:98–106. doi:10.1016/j.fgb.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  101. Harrington L, Srikanth CV, Antony R, Rhee SJ, Mellor AL, Shi HN, Cherayil BJ (2008) Deficiency of indoleamine 2,3-dioxygenase enhances commensal-induced antibody responses and protects against Citrobacter rodentium-induced colitis. Infect Immun 76:3045–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hahn ME (2002) Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact 141:131–160

    Article  CAS  PubMed  Google Scholar 

  103. Heath-Pagliuso S, Rogers WJ, Tullis K, Seidel SD, Cenijn PH, Brouwer A, Denison MS (1998) Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry 37:11508–11515

    Article  CAS  PubMed  Google Scholar 

  104. Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradfield CA (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci U S A 88:9543–9547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Esser C, Bargen I, Weighardt H, Haarmann-Stemmann T, Krutmann J (2013) Functions of the aryl hydrocarbon receptor in the skin. Semin Immunopathol 35:677–691. doi:10.1007/s00281-013-0394-4

    Article  CAS  PubMed  Google Scholar 

  106. Di Meglio P, Duarte JH, Ahlfors H, Owens ND, Li Y, Villanova F, Tosi I, Hirota K, Nestle FO, Mrowietz U, Gilchrist MJ, Stockinger B (2014) Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity 40:989–1001. doi:10.1016/j.immuni.2014.04.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Vlachos C, Schulte BM, Magiatis P, Adema GJ, Gaitanis G (2012) Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells. Br J Dermatol 167:496–505. doi:10.1111/j.1365-2133.2012.11014.x

    Article  CAS  PubMed  Google Scholar 

  108. Gaitanis G, Magiatis P, Stathopoulou K, Bassukas ID, Alexopoulos EC, Velegraki A, Skaltsounis AL (2008) AhR ligands, malassezin, and indolo[3,2-b]carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis. J Invest Dermatol 128:1620–1625. doi:10.1038/sj.jid.5701252

    Article  CAS  PubMed  Google Scholar 

  109. Platten M, von Knebel DN, Oezen I, Wick W, Ochs K (2014) Cancer Immunotherapy by Targeting IDO1/TDO and Their Downstream Effectors. Front Immunol 5:673. doi:10.3389/fimmu.2014.00673

    PubMed  PubMed Central  Google Scholar 

  110. Litzenburger UM, Opitz CA, Sahm F, Rauschenbach KJ, Trump S, Winter M, Ott M, Ochs K, Lutz C, Liu X, Anastasov N, Lehmann I, Hofer T, von Deimling A, Wick W, Platten M (2014) Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget 5:1038–1051

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the ERC-2011-AdG-293714 to Dr. Romani. We thank Dr. Cristina Massi Benedetti for the editorial assistance.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigina Romani.

Additional information

This article is a contribution to the Special Issue on Immunopathology of Mycobacterial Diseases - Guest Editor: Stefan Kaufmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelante, T., Pieraccini, G., Scaringi, L. et al. Learning from other diseases: protection and pathology in chronic fungal infections. Semin Immunopathol 38, 239–248 (2016). https://doi.org/10.1007/s00281-015-0523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0523-3

Keywords

Navigation