Skip to main content

Advertisement

Log in

Plant Growth-Promoting and Rhizosphere-Competent Acinetobacter rhizosphaerae Strain BIHB 723 from the Cold Deserts of the Himalayas

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A phosphate-solubilizing bacterial strain BIHB 723 isolated from the rhizosphere of Hippophae rhamnoides was identified as Acinetobacter rhizosphaerae on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of inorganic and organic phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, ammonia generation, and siderophore production. A significant increase in the growth of pea, chickpea, maize, and barley was recorded for inoculations under controlled conditions. Field testing with the pea also showed a significant increment in plant growth and yield. The rifampicin mutant of the bacterial strain effectively colonized the pea rhizosphere without adversely affecting the resident microbial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiol Res 163:173–181

    Article  PubMed  CAS  Google Scholar 

  2. Albert F, Anderson AJ (1987) The effect of Pseudomonas putida colonization on root surface peroxidases. Plant Physiol 85:535–541

    Article  Google Scholar 

  3. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth reduction. Soil Biol Biochem 19:452–458

    Google Scholar 

  4. Cappuccino JC, Sherman N (1992) Microbiology: a laboratory manual. Benjamin/Cummings Publishing Co., New York, pp 125–179

    Google Scholar 

  5. Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    CAS  Google Scholar 

  6. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  PubMed  CAS  Google Scholar 

  7. Duponois R, Kisa M, Plenchette C (2006) Phosphate-solubilizing potential of the nematophagous fungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282

    Article  CAS  Google Scholar 

  8. Glandorf DCM, Sluis IV, Anderson AJ et al (1994) Agglutinization, adherence, and root colonization by fluorescent pseudomonads. Appl Environ Microbiol 60:1726–1733

    PubMed  CAS  Google Scholar 

  9. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  10. Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent pseudomonads from rhizosphere of seabuckthorn growing in cold deserts of Himalayas. Curr Microbiol 56:73–79

    Article  PubMed  CAS  Google Scholar 

  11. Hoagland DR, Arnon DI (1938) The water-culture methods for growing plants without soil. Circ Calif Agric Expt Stn Ext Serv, Berkeley, California, p 347

  12. Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of Diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  PubMed  CAS  Google Scholar 

  13. Jacobson BC, Pasternak JJ, Glick BR (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR 12–2. Can J Microbiol 40:1019–1025

    Article  CAS  Google Scholar 

  14. Johri JK, Surange S, Nautiyal CS (1999) Occurrence of salt-, pH-, and temperature-tolerant phosphate-solubilizing bacteria in alkaline soils. Curr Microbiol 39:89–93

    Article  PubMed  CAS  Google Scholar 

  15. Kravchenko LV, Azarova TS, Makarova NM, Tikhonovich IA (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73:156–158

    Article  CAS  Google Scholar 

  16. Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology, vol. 1. Williams and Willkins, Baltimore, p 964

  17. Kuklinsky-Sobrat J, Araujo WL, Mendes R et al (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  Google Scholar 

  18. Loper JE, Schroth MN (1986) Influence of bacterial sources on indole-3-acetic acid on root elongation of sugarbeet. Phytopathology 76:386–389

    Article  CAS  Google Scholar 

  19. Lottmann J, Heuer H, de Vries J et al (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol Ecol 33:41–49

    Article  PubMed  Google Scholar 

  20. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate-solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  PubMed  CAS  Google Scholar 

  21. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    PubMed  CAS  Google Scholar 

  22. Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez R, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  24. Rodriguez H, Vessely S, Shah S, Glick BR (2008) Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr Microbiol 57:170–174

    Article  PubMed  CAS  Google Scholar 

  25. Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    PubMed  CAS  Google Scholar 

  26. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  27. Singh RP, Gupta MK (1990) Soil and vegetation study of Lahaul and Spiti cold desert of Western Himalayas. Indian Forester 116:785–790

    CAS  Google Scholar 

  28. Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphates by a novel salt and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol 97:204–210

    Article  PubMed  CAS  Google Scholar 

  29. Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162:69–76

    Article  PubMed  CAS  Google Scholar 

  30. Vargas FRD, O’Hara GW (2006) Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. J Appl Microbiol 100:946–954

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Chandigarh, India for FAME analysis. They also acknowledge the Director of the Institute of Himalayan Bioresource Technology for providing the necessary facilities. The Council of Scientific and Industrial Research, Government of India, also is acknowledged for financial support under the CSIR Network Project “Exploitation of India’s Rich Microbial Wealth” (NWP 006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Gulati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulati, A., Vyas, P., Rahi, P. et al. Plant Growth-Promoting and Rhizosphere-Competent Acinetobacter rhizosphaerae Strain BIHB 723 from the Cold Deserts of the Himalayas. Curr Microbiol 58, 371–377 (2009). https://doi.org/10.1007/s00284-008-9339-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9339-x

Keywords

Navigation