Skip to main content
Log in

Aniline-Induced Tryptophan Production and Identification of Indole Derivatives from Three Purple Bacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Growth on aniline by three purple non-sulfur bacteria (Rhodospirillum rubrum ATCC 11170, Rhodobacter sphaeroides DSM 158, and Rubrivivax benzoatiliticus JA2) as nitrogen, or carbon source could not be demonstrated. However in its presence, production of indole derivatives was observed with all the strains tested. At least 14 chromatographically (HPLC) distinct peaks were observed at the absorption maxima of 275–280 nm from aniline induced cultures. Five major indoles were identified based on HPLC and LC–MS/MS analysis. While tryptophan was the major common metabolite for all the three aniline induced cultures, production of indole-3-acetic acid was observed with Rvi. benzoatilyticus JA2 alone, while indole-3-aldehyde was identified from Rvi. benzoatilyticus JA2 and Rba. sphaeroides DSM 158. Indole-3-ethanol was identified only from Rsp. rubrum ATCC 1170 and anthranilic acid was identified from Rba. sphaeroides DSM 158.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alexander M (1999) Biodegradation and bioremediation. Academic press, San Diego

    Google Scholar 

  2. Biebl H, Pfennig N (1981) Isolation of members of the family Rhodospirillaceae. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, New York

    Google Scholar 

  3. Chengbin X, Jun N, Hai Y, Xundong S, Jiye HU (2009) Biodegradation of aniline by a newly isolated Delftia sp. XYJ6. Chin J Chem Eng 17:500–505

    Article  Google Scholar 

  4. Drazyga O, Schmid A, Blotevogel KH (1996) Cometabolic transformation and cleavage of nitrodiphenylamines by three newly isolated sulfate-reducing bacterial strains. Appl Environ Microbiol 62:1710–1716

    Google Scholar 

  5. Gordon SA, Paleg LG (1957) Quantitative measurement of indole acetic acid. Plant Physiol 10:37–48

    Google Scholar 

  6. Harvey PJ, Companella BF, Castro PM, Harms H, Lichtfouse E, Schaffner AR, Smrek S, Wesck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, aniline and phenols. Environ Sci Pollut Res Int 9:29–47

    Article  CAS  PubMed  Google Scholar 

  7. Junminx L, Zexin J, Binbin Y (2010) Isolation and characterization of aniline degradation slightly halophilic bacterium, Erwinia sp. StrainHSA6. Microbiol Res (in press). doi:10.1016/j.micres.2009.09.003

  8. Kahng HY, Kukor JJ, Oh KH (2000) Characterization of strain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline. FEMS Microbiol Lett 190:215–221

    Article  CAS  PubMed  Google Scholar 

  9. Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A (2003) Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol Lett 227:219–227

    Article  CAS  PubMed  Google Scholar 

  10. Lee J, Lee JH (2010) Intercellular signal indole in microbial community. FEMS Microbiol Rev (in press). doi:10.1111/j.1574-6976.2009.00204.x

  11. Liang Q, Takeo M, Chen M, Zhang W, Xu Y, Lin M (2005) Chromosome encoded gene cluster for the metabolic pathway that converts aniline to TCA-cycle intermediates in Delftia tsuruthatenesis AD9. Microbiology 151:3435–3446

    Article  CAS  PubMed  Google Scholar 

  12. Liu Z, Yang H, Huang Z, Zhou P, Liu SJ (2002) Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl Microbiol Biotechnol 58:682–689

    Google Scholar 

  13. Lyons CD, Katz S, Bartha R (1984) Mechanisms and pathways of aniline elimination from aquatic environments. Appl Environ Microbiol 48:491–496

    CAS  PubMed  Google Scholar 

  14. Mandira M, Sheela S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  Google Scholar 

  15. Nanda D, Sasikala Ch, Ramana ChV (2000) Light dependent transformation of anthranilate to indole by Rhodobacter sphaeroides OU5. J Ind Microbiol Biotechnol 24:219–221

    Article  Google Scholar 

  16. Powell LE (1964) Preparation of indole extracts from plants for gas chromatography and spectrophotofluorometry. Plant Physiol 39:836–842

    Article  CAS  PubMed  Google Scholar 

  17. Rajasekhar N, Sasikala Ch, Ramana ChV (1999) Photometabolism of indole by purple non-sulfur bacteria. Ind J Microbiol 39:39–44

    Google Scholar 

  18. Rajasekhar N, Sasikala Ch, Ramana ChV (1999) Photoproduction of l-tryptophan from indole and glycine by Rhodobacter sphaeroides OU5. Biotechnol Appl Biochem 30:209–212

    CAS  PubMed  Google Scholar 

  19. Rajasekhar N, Sasikala Ch, Ramana ChV (1999) Photoproduction of indole-3-acetic acid by Rhodobacter sphaeroides from indole and glycine. Biotechnol Lett 21:543–545

    Article  CAS  Google Scholar 

  20. Sasikala Ch, Ramana ChV (1998) Biodegradation and metabolism of unusual carbon compounds by anoxygenic phototrophic bacteria. Adv Microb Physiol 39:339–377

    Article  CAS  PubMed  Google Scholar 

  21. Schnell S, Schink B (1991) Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA Desulfobacterium anilini. Arch Microbiol 155:183–190

    Article  CAS  Google Scholar 

  22. Sugimoto S, Shiio I (1982) Tryptophan synthase and production of l-tryptophan in regulatory mutants. Agric Biol Chem 46:2711–2718

    CAS  Google Scholar 

  23. Sunayana MR, Sasikala Ch, Ramana ChV (2005) Production of novel indole esters from 2-aminobenzoate by Rhodobacter sphaeroides OU5. J Ind Microbiol Biotechnol 32:41–45

    Article  CAS  PubMed  Google Scholar 

  24. Takenaka S, Sasanao MY, Takahashi Y, Murakami S, Aoki K (2006) Microbial transformation of aniline derivatives: regioselective biotransformation and detoxification of 2-phenylenediamine by Bacillus cereus strain PDa-1. J Biosci Bioeng 102:21–27

    Article  CAS  PubMed  Google Scholar 

  25. Vijay S, Sunayana MR, Ranjith NK, Sasikala Ch, Ramana ChV (2006) Light dependent transformation of aniline to indole esters by the purple bacterium Rhodobacter sphaeroides OU5. Curr Microbiol 52:413–417

    Article  Google Scholar 

Download references

Acknowledgments

Md. Mujahid thanks CSIR, Government of India for the award of JRF. Facilities used under the FIST and CAS supported by DST and UGC, Government of India, respectively, are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. V. Ramana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujahid, M., Sasikala, C. & Ramana, C.V. Aniline-Induced Tryptophan Production and Identification of Indole Derivatives from Three Purple Bacteria. Curr Microbiol 61, 285–290 (2010). https://doi.org/10.1007/s00284-010-9609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9609-2

Keywords

Navigation