Skip to main content
Log in

Characterization of MnpC, a Hydroquinone Dioxygenase Likely Involved in the meta-Nitrophenol Degradation by Cupriavidus necator JMP134

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Cupriavidus necator JMP134 utilizes meta-nitrophenol (MNP) as the sole source of carbon, nitrogen, and energy. The metabolic reconstruction of MNP degradation performed in silico suggested that MnpC might have played an important role in MNP degradation. In order to experimentally confirm the prediction, we have now characterized the mnpC-encoded (amino)hydroquinone dioxygenase involved in the ring-cleavage reaction of MNP degradation. Real-time PCR analysis indicated that mnpC played an essential role in MNP degradation. MnpC was purified to homogeneity as an N-terminal six-His-tagged fusion protein, and it was proved to be a dimer as demonstrated by gel filtration. MnpC was a Fe2+- and Mn2+-dependent dioxygenase, catalyzing the ring-cleavage of hydroquinone to 4-hydroxymuconic semialdehyde in vitro and proposed as an aminohydroquinone dioxygenase involved in MNP degradation in vivo. Phylogenetic analysis suggested that MnpC diverged from the other (chloro)hydroquinone dioxygenases at an earlier point, which might result in the preference for its physiological substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  2. Bruhn C, Lenke H, Knackmuss HJ (1987) Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl Environ Microbiol 53:208–210

    CAS  PubMed  Google Scholar 

  3. Darby JM, Taylor DG, Hopper DJ (1987) Hydroquinone as the ring-fission substrate in the catabolism of 4-ethylphenol and 4-hydroxyacetophenone by Pseudomonas putida JD1. J Gen Microbiol 133:2137–2146

    CAS  Google Scholar 

  4. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  5. Lee JY, Xun L (1997) Purification and characterization of 2,6-dichloro-p-hydroquinone chlorohydrolase from Flavobacterium sp. strain ATCC 39723. J Bacteriol 179:1521–1524

    CAS  PubMed  Google Scholar 

  6. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( 2^{ - \Delta\Delta{\rm C}_{\rm T}} \) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  7. Louie TM, Webster CM, Xun LY (2002) Genetic and biochemical characterization of a 2, 4, 6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184:3492–3500

    Article  CAS  PubMed  Google Scholar 

  8. Meulenberg R, Pepi M, de Bont JA (1996) Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1, 2, 4-benzenetriol. Biodegradation 7:303–311

    Article  CAS  PubMed  Google Scholar 

  9. Miyauchi K, Adachi Y, Nagata Y, Takagi M (1999) Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis. J Bacteriol 181:6712–6719

    CAS  PubMed  Google Scholar 

  10. Miyauchi K, Suh SK, Nagata Y, Takagi M (1998) Cloning and sequencing of a 2, 5-dichlorohydroquinone reductive dehalogenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane by Sphingomonas paucimobilis. J Bacteriol 180:1354–1359

    CAS  PubMed  Google Scholar 

  11. Moonen MJ, Synowsky SA, van den Berg WA, Westphal AH, Heck AJ, van den Heuvel RH, Fraaije MW, van Berkel WJ (2008) Hydroquinone dioxygenase from Pseudomonas fluorescens ACB: a novel member of the family of nonheme-iron(II)-dependent dioxygenases. J Bacteriol 190:5199–5209

    Article  CAS  PubMed  Google Scholar 

  12. Perez-Pantoja D, De la Iglesia R, Pieper DH, Gonzalez B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794

    Article  CAS  PubMed  Google Scholar 

  13. Perry LL, Zylstra GJ (2007) Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase. J Bacteriol 189:7563–7572

    Article  CAS  PubMed  Google Scholar 

  14. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  15. Schenzle A, Lenke H, Fischer P, Williams PA, Knackmuss H (1997) Catabolism of 3-nitrophenol by Ralstonia eutropha JMP 134. Appl Environ Microbiol 63:1421–1427

    CAS  PubMed  Google Scholar 

  16. Schenzle A, Lenke H, Spain JC, Knackmuss HJ (1999) 3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 catalyzes a Bamberger rearrangement. J Bacteriol 181:1444–1450

    CAS  PubMed  Google Scholar 

  17. Schmidt S, Kirby GW (2001) Dioxygenative cleavage of C-methylated hydroquinones and 2,6-dichlorohydroquinone by Pseudomonas sp. HH35. Biochim Biophys Acta 1568:83–89

    CAS  PubMed  Google Scholar 

  18. Spain JC, Gibson DT (1991) Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl Environ Microbiol 57:812–819

    CAS  PubMed  Google Scholar 

  19. Takenaka S, Murakami S, Shinke R, Hatakeyama K, Yukawa H, Aoki K (1997) Novel genes encoding 2-aminophenol 1,6-dioxygenase from Pseudomonas species AP-3 growing on 2-aminophenol and catalytic properties of the purified enzyme. J Biol Chem 272:14727–14732

    Article  CAS  PubMed  Google Scholar 

  20. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  21. Xiao Y, Wu JF, Liu H, Wang SJ, Liu SJ, Zhou NY (2006) Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73. Appl Microbiol Biotechnol 73:166–171

    Article  CAS  PubMed  Google Scholar 

  22. Xiao Y, Zhang JJ, Liu H, Zhou NY (2007) Molecular characterization of a novel ortho-nitrophenol catabolic gene cluster in Alcaligenes sp. strain NyZ215. J Bacteriol 189:6587–6593

    Article  CAS  PubMed  Google Scholar 

  23. Xu L, Resing K, Lawson SL, Babbitt PC, Copley SD (1999) Evidence that pcpA encodes 2, 6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723. Biochemistry 38:7659–7669

    Article  CAS  PubMed  Google Scholar 

  24. Xun L, Bohuslavek J, Cai M (1999) Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonas chlorophenolica ATCC 39723. Biochem Biophys Res Commun 266:322–325

    Article  CAS  PubMed  Google Scholar 

  25. Yin Y, Xiao Y, Liu HZ, Hao FH, Rayner S, Tang HR, Zhou NY (2010) Characterization of catabolic meta-nitrophenol nitroreductase from Cupriavidus necator JMP134. Appl Microbiol Biotechnol (submitted)

  26. Zeyer J, Kocher HP (1988) Purification and characterization of a bacterial nitrophenol oxygenase which converts ortho-nitrophenol to catechol and nitrite. J Bacteriol 170:1789–1794

    CAS  PubMed  Google Scholar 

  27. Zhang JJ, Liu H, Xiao Y, Zhang XE, Zhou NY (2009) Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp Strain WBC-3. J Bacteriol 191:2703–2710

    Article  CAS  PubMed  Google Scholar 

  28. Zhou NY, Fuenmayor SL, Williams PA (2001) nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J Bacteriol 183:700–708

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports from the National High Technology Research and Development Program of China (grant 2006AA10Z403) and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-G-072-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning-Yi Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Zhou, NY. Characterization of MnpC, a Hydroquinone Dioxygenase Likely Involved in the meta-Nitrophenol Degradation by Cupriavidus necator JMP134. Curr Microbiol 61, 471–476 (2010). https://doi.org/10.1007/s00284-010-9640-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9640-3

Keywords

Navigation