Skip to main content
Log in

Salinivibrio costicola GL6, a Novel Isolated Strain for Biotransformation of Caffeine to Theobromine Under Hypersaline Conditions

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The present study has been conducted towards isolation of moderately halophilic bacteria capable of transforming caffeine into theobromine. A total of 45 caffeine-degrading moderate halophiles were enriched from hypersaline lakes and examined for the biotransformation of caffeine to theobromine by thin-layer chromatography (TLC) and high-performance liquid chromatography analyses. Strain GL6, giving the highest yield of theobromine, was isolated from the Hoz Soltan Lake, 20 % w/v salinity, central Iran, and identified as Salinivibrio costicola based on morphological and biochemical features as well as its 16S rRNA gene sequence analysis (GeneBank Accession No. KT378066) and DNA–DNA relatedness. The biotransformation of caffeine with strain GL6 leads to the formation of two metabolites, identified as theobromine and paraxanthine, but the yield of paraxanthine was much lower. Further study on the production of theobromine from caffeine under resting cell experiment was carried out subsequently. The optimal yield of theobromine (56 %) was obtained after a 32-h incubation using 5 mM of caffeine and 15 g l−1 (wet weight) of biomass in 0.1 M saline phosphate buffer (pH 7.0 and 10 % w/v NaCl) under agitation 180 rpm at 30 °C. The biotransformed theobromine was purified by preparative TLC and subjected to FTIR and mass spectroscopy for chemical identification. This is the first evidence for biotransformation of caffeine into theobromine by strains of the genus Salinivibrio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdelkafi S, Sayadi S, Ben Ali Gam Z et al (2006) Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation. FEMS Microbiol Lett 262:115–120

    Article  CAS  PubMed  Google Scholar 

  2. Amoozegar MA, Schumann P, Hajighasemi M et al (2008) Salinivibrio proteolyticus sp. nov., a moderately halophilic and proteolytic species from a hypersaline lake in Iran. Int J Syst Evol Microbiol 58:1159–1163

    Article  CAS  PubMed  Google Scholar 

  3. Asano Y, Toshihiro K, Yamada H (1993) Microbial production of theobromine from caffeine. Biosci Biotechnol Biochem 57:1286–1289

    Article  CAS  Google Scholar 

  4. Ashihara H, Monteiro AM, Moritz T et al (1996) Catabolism of caffeine and related purine alkaloids in leaves of Coffea arabica L. Planta 198:334–339

    Article  CAS  Google Scholar 

  5. Barcz E, Sommer E, Janik P et al (2000) Adenosine receptor antagonism causes inhibition of angiogenic activity of human ovarian cancer cells. Oncol Rep 7:1285–1291

    CAS  PubMed  Google Scholar 

  6. Blecher R, Lingens F (1977) Metabolism of caffeine by Pseudomonas putida. Hoppe Seylers Z Physiol Chem 358:807–817

    Article  CAS  PubMed  Google Scholar 

  7. Christ C (2008) Production-integrated environmental protection and waste management in the chemical industry. Wiley, Hoboken

    Google Scholar 

  8. Dash SS, Gummadi SN (2007) Degradation kinetics of caffeine and related methylxanthines by induced cells of Pseudomonas sp. Curr Microbiol 55:56–60

    Article  CAS  PubMed  Google Scholar 

  9. Garcia MT, Ventosa A, Ruiz-Berraquero F et al (1987) Taxonomic study and amended description of Vibrio costicola. Int J Syst Bacteriol 37:251–256

    Article  Google Scholar 

  10. Gluck M, Lingens F (1987) Studies on the microbial production of thebromine and heteroxanthine from caffeine. Appl Microbiol Biotechnol 25:334–340

    Article  Google Scholar 

  11. Gokulakrishnan S, Chandraraj K, Gummadi SN (2007) A preliminary study of caffeine degradation by Pseudomonas sp. GSC1182. Int J Food Microbiol 113:346–350

    Article  CAS  PubMed  Google Scholar 

  12. Gorriti MF, Dias GM, Chimetto LA et al (2014) Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BMC Genom 15:473

    Article  Google Scholar 

  13. Gunasekaran S, Sankari G, Ponnusamy S (2005) Vibrational spectral investigation on xanthine and its derivatives-theophylline, caffeine and theobromine. Spectrochim Acta A 61:117–127

    Article  CAS  Google Scholar 

  14. Gutiérrez-Sánchez G, Roussos S, Augur C (2013) Effect of caffeine concentration on biomass production, caffeine degradation, and morphology of Aspergillus tamarii. Folia Microbiol 58:195–200

    Article  Google Scholar 

  15. Hallstrom T, Wolk A, Glynn A et al (2006) Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos Int 17:1055–1064

    Article  CAS  PubMed  Google Scholar 

  16. Hanamura S, Chikauchi Ken, Kanazawa S et al (2011). Production method for a high theobromine-containing composition. US patent application 20110003834

  17. Heckman MA, Weil J, De Mejia EG (2010) Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75:77–87

    Article  Google Scholar 

  18. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  19. Ibrahim S, Shukor MY, Syed MA et al (2016) Characterization and growth kinetics studies of caffeine- degrading bacterium Leifsonia sp. strain SIU. Ann Microbiol 66:289–298

    Article  CAS  Google Scholar 

  20. Kakuyama A, Sadzuka Y (2001) Effect of methylxanthine derivatives on doxorubicin transport and antitumor activity. Curr Drug Metab 2:379–395

    Article  CAS  PubMed  Google Scholar 

  21. Kargul B, Ozcan M, Peker S et al (2012) Evaluation of human enamel surfaces treated with theobromine: a pilot study. Oral Health Prev Dent 10:275–282

    PubMed  Google Scholar 

  22. Lakshmi V, Das N (2010) Caffeine degradation by yeasts isolated from caffeine contaminated samples. Int J Sci Nat 1:47–52

    Google Scholar 

  23. Leifson E (1963) Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Madyastha KM, Sridhar GR (1998) A novel pathway for the metabolism of caffeine by a mixed culture consortium. Biochem Biophys Res Commun 249:178–181

    Article  CAS  PubMed  Google Scholar 

  25. Mazzafera P, Olsson O, Sandberg G (1996) Degradation of caffeine and related methylxanthines by Serratia marcescens isolated from soil under coffee cultivation. Microb Ecol 31:199–207

    Article  CAS  PubMed  Google Scholar 

  26. Moffat AC (ed) (1986) Clarke’s isolation and identification of drugs, 2nd edn. The Pharmaceutical Press, London, pp 1010–1011

    Google Scholar 

  27. Mohapatra BR, Harris N, Nordin R et al (2006) Purification and characterization of a novel caffeine oxidase from Alcaligenes species. J Biotechnol 125:319–327

    Article  CAS  PubMed  Google Scholar 

  28. Namwong S, Tanasupawat S, Smitinont T et al (2005) Isolation of Lentibacillus salicampi strains and Lentibacillus juripiscarius sp. nov. from fish sauce in Thailand. Int J Syst Evol Microbiol 55:315–320

    Article  CAS  PubMed  Google Scholar 

  29. Nayak S, Harshitha MJ, Sampath MC et al (2012) Isolation and characterization of caffeine degrading bacteria from coffee pulp. Indian J Biotechnol 11:86–91

    CAS  Google Scholar 

  30. Nieto JJ, Fernandez-Castillo R, Marquez MC et al (1989) Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55:2385–2390

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nurminen ML, Niittynen L, Korpela R et al (1999) Coffee, caffeine and blood pressure: a critical review. Eur J Clin Nutr 53:831–839

    Article  CAS  PubMed  Google Scholar 

  32. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  PubMed  Google Scholar 

  33. Quiñones M, Miguel M, Muguerza B et al (2011) Effects of a cocoa polyphenol extract in spontaneously hypertensive rats. Food Func 2:649–653

    Article  Google Scholar 

  34. Ramarethinam S, Rajalakshmi N (2004) Caffeine in tea plants [Camellia sinensis (L.) O. Kuntze]: in situ lowering by Bacillus licheniformis (Weigmann) Chester. Indian J Exp Biol 42:575–580

    CAS  PubMed  Google Scholar 

  35. Retnadhas S, Gummadi SN (2014) Optimization of process conditions for biotransformation of caffeine to theobromine using induced whole cells of Pseudomonas sp. J Bioprocess Biotech 4:178

    Article  Google Scholar 

  36. Sarath Babu VR, Patra S, Thakur MS et al (2005) Degradation of caffeine by Pseudomonasalcaligenes CFR 1708. Enzyme Microb Technol 37:617–624

    Article  Google Scholar 

  37. Schwimmer S, Kurtzman RH (1971) Caffeine metabolism by Penicillium roqueforti. Arch Biochem Biophys 147:109–113

    Article  CAS  PubMed  Google Scholar 

  38. Slattery ML, West DW (1993) Smoking, alcohol, coffee, tea, caffeine, and theobromine: risk of prostate cancer in Utah (United States). Cancer Causes Control 4:559–563

    Article  CAS  PubMed  Google Scholar 

  39. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  40. Srivastava KC (1993) Properties of thermostable hemicellulolytic enzymes from Thermomonospora strain 29 grown in solid state fermentation on coffee processing solid waste. Biotechnol Adv 11:441–465

    Article  CAS  PubMed  Google Scholar 

  41. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Usmani OS, Belvisi MG, Patel HJ et al (2005) Theobromine inhibits sensory nerve activation and cough. FASEB J 19:231–233

    CAS  PubMed  Google Scholar 

  43. Wang CY, Hsieh YR, Ng CC et al (2009) Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzyme Microb Technol 44:373–379

    Article  CAS  Google Scholar 

  44. Weisburg WG, Barns SM, Pelletier DA et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang M, Xu YJ, Mengi SA et al (2004) Therapeutic potentials of pentoxifylline for treatment of cardiovascular diseases. Exp Clin Cardiol 9:103–111

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Research Vice Chancellor of the University of Kurdistan for offering a Grant No. 3357210351 for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morahem Ashengroph.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashengroph, M. Salinivibrio costicola GL6, a Novel Isolated Strain for Biotransformation of Caffeine to Theobromine Under Hypersaline Conditions. Curr Microbiol 74, 34–41 (2017). https://doi.org/10.1007/s00284-016-1148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1148-z

Keywords

Navigation