Skip to main content
Log in

Prevention of High-Level Daptomycin-Resistance Emergence In Vitro in Streptococcus mitis-oralis by Using Combination Antimicrobial Strategies

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Among the viridans group streptococci, S. mitis-oralis strains are frequently resistant to multiple β-lactams and tolerant to vancomycin (VAN). This scenario has led to the proposed clinical use of newer agents, like daptomycin (DAP) for such S. mitis-oralis strains. However, recent recognition of the rapid and durable emergence of high-level DAP-resistance (DAP-R; DAP MICs > 256 µg/ml) induced by DAP exposures in vitro and in vivo has dampened enthusiasm for such approaches. In this study, we evaluated a broad range of DAP combination regimens in vitro for their capacity to prevent emergence of high-level DAP-R in a prototype S. mitis-oralis strain (351) during serial passage experiments, including DAP + either gentamicin (GEN), rifampin (RIF), trimethoprim–sulfamethoxazole (TMP–SMX), imipenem (IMP), ceftaroline (CPT), tedizolid (TDZ), or linezolid (LDZ). In addition, we assessed selected DAP combination regimens for their ability to exert either an early bactericidal impact and/or synergistically kill the S. mitis-oralis study strain. During serial passage, three of the eight antibiotic combinations (DAP + GEN, CPT, or TMP- SMX) exhibited significantly reduced DAP MICs (≈ by 8–40 fold) vs serial exposure in DAP alone (DAP MICs > 256 µg/ml). In addition, combinations of DAP + GEN and DAP + CPT were both bactericidal and synergistic in early time-kill curve interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, Barsic B, Lockhart PB, Gewitz MH, Levison ME, Bolger AF, Steckelberg JM, Baltimore RS, Fink AM, O’Gara P, Taubert KA, American Heart Association Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young, Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Stroke Council (2015) Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation 132:1435–1486

    Article  CAS  Google Scholar 

  2. Berti AD, Theisen E, Sauer J-D, Nonejuie P, Olson J, Pogliano J, Sakoulas G, Nizet V, Proctor RA, Rose WE (2015) Penicillin binding protein-1 is important in the compensatory response of Staphylococcus aureus to daptomycin-induced membrane damage and is a potential target for β-lactam-daptomycin synergy. Antimicrob Agents Chemother 60(1):451–458

    Article  Google Scholar 

  3. CLSI (2006) Performance standards for antimicrobial susceptibility testing: approved standard M100-S16. CLSI, Wayne

    Google Scholar 

  4. Doern GV, Ferraro MJ, Brueggemann AB, Ruoff KL (1996) Emergence of high rates of antimicrobial resistance among viridans group streptococci in the United States. Antimicrob Agents Chemother 40:891–894

    Article  CAS  Google Scholar 

  5. Eliopoulos G, Moellering R (1996) Antimicrobial combinations. In: Lorian V (ed) Antibiotics in laboratory medicine. William and Wilkins Co., Baltimore, pp 330–396

    Google Scholar 

  6. Falagas ME, Manta KG, Ntziora F, Vardakas KZ (2006) Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J Antimicrob Chemother 58(2):273–280

    Article  CAS  Google Scholar 

  7. Fowler VG, Scheld WM, Bayer AS (2015) Endocarditis and intravascular infections. In: Bennett JE, Dolin R, Blaser MJ (eds) Principles and practices of infectious diseases. Elsevier, Amsterdam, pp 990–1028

    Google Scholar 

  8. Furustrand Tafin U, Majic I, Zalila Belkhodja C, Betrisey B, Corvec S, Zimmerli W, Trampuz A (2011) Gentamicin improves the activities of daptomycin and vancomycin against Enterococcus faecalis in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother 55:4821–4827

    Article  Google Scholar 

  9. García-de-la-Mària C, Pericas JM, Río AD, Castañeda X, Armero XVY, Espinal PA, Cervera C, Soy D, Falces C, Ninot S, Almela M, Mestres CA, Gatell JM, Vila J, Moreno A, Marco F, Miró JM, the Hospital Clinic Experimental Endocarditis Study Group (2013) Early in vitro and in vivo development of high-level daptomycin resistance is common in mitis group of streptococci after exposure to daptomycin. Antimicrob Agents Chemother 57:2319–2325

    Article  Google Scholar 

  10. Houlihan HH, Stokes DP, Rybak MJ (2000) Pharmacodynamics of vancomycin and ampicillin alone and in combination with gentamicin once daily or thrice daily against Enterococcus faecalis in an in vitro infection model. J Antimicrobial Chemother 46:79–86

    Article  CAS  Google Scholar 

  11. Isenberg HD (2004) Clinical microbiology procedures handbook. ASM Press, Washington, DC

    Google Scholar 

  12. Kisgen JJ, Mansour H, Unger NR, Childs LM (2014) Tedizolid: a new oxazolidinone antimicrobial. Am J Health Syst Pharm 71(8):621–633

    Article  CAS  Google Scholar 

  13. Knoll B, Tleyjeh IM, Steckelberg JM, Wilson WR, Baddour LM (2007) Infective endocarditis due to penicillin-resistant viridans group streptococci. Clin Infect Dis 44(12):1585–1592

    Article  Google Scholar 

  14. Levy CS, Kogulan P, Gill VJ, Croxton MB, Kane JG, Lucey DR (2001) Endocarditis caused by penicillin-resistant viridans streptococci: 2 cases and controversies in therapy. Clin Infect Dis 33:577–579

    Article  CAS  Google Scholar 

  15. Matsui N, Ito M, Kuramae H, Inukai T, Sakai A, Okugawa M (2013) Infective endocarditis caused by multidrug-resistant Streptococcus mitis in a combined immunocompromised patient: an autopsy case report. J Infect Chemother 19:321–325

    Article  Google Scholar 

  16. Mehta S, Singh C, Plata KB, Chanda PK, Paul A, Riosa S, Rosato RR, Rosato AE (2012) Beta-lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives. Antimicrob Agents Chemother 56:6192–6200

    Article  CAS  Google Scholar 

  17. Mishra NN, Alvarez DN, Garcia-de-la-Maria C, Pericas JM, Moreno A, Marco F, Vila X, Miro JM, Bayer AS (2014) Cell membrane (CM) characteristics of in vitro-selected high-level daptomycin-resistant (DAP-R) strains of Streptococcus mitis. In: Proceedings of interscience conference on antimicrobial agents and chemotherapy (ICAAC), Washington, DC

  18. Mishra NN, Tran TT, Seepersaud R, Garcia-de-la-Maria C, Faull K, Yoon A, Miro JM, Rybak MJ, Bayer AS, Arias CA, Sullam PM (2017) Perturbations of phosphatidate cytidylyltransferase (CdsA) mediate daptomycin resistance in Streptococcus mitis by a novel mechanism. Antimicrobial Agents Chemother 61:e02435-16

    Article  Google Scholar 

  19. Mitchell J (2011) Streptococcus mitis: walking the line between commensalism and pathogenesis. Molecular Oral Microbiol 26:89–98

    Article  CAS  Google Scholar 

  20. Roger C, Roberts JA, Muller L (2017) Clinical pharmacokinetics and pharmacodynamics of oxazolidinones. Clin Pharmacokinet. https://doi.org/10.1007/s40262-017-0601-x

    Article  PubMed  Google Scholar 

  21. Sakoulas G, Bayer AS, Pogliano J, Tsuji BT, Yang SJ, Mishra NN, Nizet V, Yeaman MR, Moise PA (2012) Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother 56(2):838–844

    Article  Google Scholar 

  22. Safdar A, Rolston KV (2006) Vancomycin tolerance, a potential mechanism for refractory gram-positive bacteremia observational study in patients with cancer. Cancer 106:1815–1820

    Article  CAS  Google Scholar 

  23. Streit JM, Steenbergen JN, Thorne GM, Alder J, Jones RN (2005) Daptomycin tested against 915 bloodstream isolates of viridans group streptococci (eight species) and Streptococcus bovis. J Antimicrob Chemother 55:574–578

    Article  CAS  Google Scholar 

  24. Tally FP, Zeckel M, Wasilewski MM, Carini C, Berman CL, Drusano GL, Oleson FB Jr (1999) Daptomycin: a novel agent for Gram-positive infections. Expert Opin Investig Drugs 8(8):1223–1238

    Article  CAS  Google Scholar 

  25. Vinay Kumar N, van der Linden M, Menon T, Nitsche-Schmitz DP (2014) Viridans and bovis group streptococci that cause infective endocarditis in two regions with contrasting epidemiology. Int J Med Microbiol 304(3–4):262–268

    Article  Google Scholar 

  26. Warren RE (2008) Daptomycin in endocarditis and bacteraemia: a British perspective. J Antimicrob Chemother 62(Suppl 3):iii25–iii33

    CAS  PubMed  Google Scholar 

  27. Werth BJ, Sakoulas G, Rose WE, Pogliano J, Ryan T, Ryabak MJ (2013) Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 57:66–73

    Article  CAS  Google Scholar 

  28. Westling K, Julander I, Ljungman P, Heimdahl A, Thalme A, Nord CE (2004) Reduced susceptibility to penicillin of viridans group streptococci in the oral cavity of patients with haematological disease. Clin Microbiol Infect 10:899–903

    Article  CAS  Google Scholar 

  29. Yang SJ, Xiong YQ, Boyle-Vavra S, Daum R, Jones T, Bayer AS (2010) Daptomycin-oxacillin combinations in treatment of experimental endocarditis caused by daptomycin-nonsusceptible strains of methicillin-resistant Staphylococcus aureus with evolving oxacillin susceptibility (the “seesaw effect”). Antimicrob Agents Chemother 54(8):3161–3169

    Article  CAS  Google Scholar 

  30. Yim J, Smith JR, Singh NB, Rice S, Stamper K, Garcia de la Maria C, Bayer AS, Mishra NN, Miró JM, Tran TT, Arias CA, Sullam P, Rybak MJ (2017) Evaluation of daptomycin combinations with cephalosporins or gentamicin against Streptococcus mitis group strains in an in vitro model of simulated endocardial vegetations (SEVs). J Antimicrob Chemother 72(8):2290–2296

    Article  CAS  Google Scholar 

  31. Zhanel GG, Sniezek G, Schweizer F, Zelenitsky S, Lagacé-Wiens PR, Rubinstein E, Gin AS, Hoban DJ, Karlowsky JA (2009) Ceftaroline: a novel broad-spectrum cephalosporin with activity against meticillin-resistant Staphylococcus aureus. Drugs 69:809–831

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant to NNM from Merck Laboratories. ASB and NNM were also supported in part by a research grant from NIH-NIAID (1RO1AI130056-01). JMM received a personal 80:20 research grant from the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. BZ received a research grant from NIH (NIH-NIGMS 5R25GM07592). These data were presented as part of Master’s Thesis in Biology by B. Zapata at California State University-Dominguez Hills Carson, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra N. Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapata, B., Alvarez, D.N., Farah, S. et al. Prevention of High-Level Daptomycin-Resistance Emergence In Vitro in Streptococcus mitis-oralis by Using Combination Antimicrobial Strategies. Curr Microbiol 75, 1062–1067 (2018). https://doi.org/10.1007/s00284-018-1491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1491-3

Navigation