Skip to main content

Advertisement

Log in

The Plant Growth-Promoting Bacteria Strain Bacillus mojavensis I4 Enhanced Salt Stress Tolerance in Durum Wheat

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Plant growth and production are adversely affected by soil salinity. A plant growth-promoting bacteria (PGPB) designated as the “I4 strain” of Bacillus mojavensis was isolated from Tunisian soil (Sfax, Tunisia) and showed the ability to be grown in the presence of NaCl concentrations ranging from 0 to 10% in Luria Bertani (LB) medium. The PGPB-mediated salt tolerance in durum wheat was evaluated. The physiological parameters such as growth, shoot and root length, dry and fresh weight were higher in I4-inoculated wheat plants in comparison with non-treated plants under salt stress. Results showed that this strain promoted wheat growth and preserved the membrane damage by notably lowering the electrolytes leakage and malondialdehyde content in contrast to non-inoculated plants. Moreover, leaf chlorophyll content, biochemical parameters and antioxidant enzyme activities measurement showed a better salt and heavy metal stress adaptation of the I4-inoculated plants. Due to these outcomes, it could be suggested that the inoculation of the PGPB I4 strain enhanced the wheat plant’s growth, especially under salt stress conditions. This study confirms the ameliorative role played by PGPB in tolerating salt stress in wheat and their potential use as biofertilizers to enhance its growth in saline soil and help in promoting this plant’s culture to provide food security under these perturbed global circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Chaudhry S, Sidhu GPS (2022) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 41(1):1–31. https://doi.org/10.1007/s00299-021-02759-5

    Article  CAS  PubMed  Google Scholar 

  2. Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  3. Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL et al (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32. https://doi.org/10.1016/j.micres.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  4. Charfeddine S, Charfeddine M, Hanana M, Gargouri-Bouzid R (2019) Ectopic expression of a grape vine vacuolar NHX antiporter enhances transgenic potato plant tolerance to salinity. J Plant Biochem Biotechnol 28(1):50–62. https://doi.org/10.1007/s13562-018-0462-x

    Article  CAS  Google Scholar 

  5. Singh RP, Jha P, Jha PN (2015) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67. https://doi.org/10.1016/j.jplph.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  6. Chandra P, Wunnava A, Verma P, Chandra A, Sharma RK (2021) Strategies to mitigate the adverse effect of drought stress on crop plants—influences of soil bacteria: a review. Pedosphere 31(3):496–509. https://doi.org/10.1016/S1002-0160(20)60092-3

    Article  CAS  Google Scholar 

  7. Ghazala I, Haddar A, Romdhane M, Ellouz-Chaanouni S (2016) Screening and molecular identification of new microbial strains for production of enzymes of biotechnological interest. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2016150152

    Article  Google Scholar 

  8. Ghazala I, Bouassida M, Krichen F, Benito J, Chaabouni Ellouz S, Haddar A (2017) Anionic lipopeptides from Bacillus mojavensis I4 as effective antihypertensive agents: production, characterization and identification. Eng Life Sci. https://doi.org/10.1002/elsc.201700020

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  10. Qingping H, Jianguo X (2011) A simple double-layered chrome azurol S agar (SD- CASA) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. Afr J Microbiol Res 5:4321–4327

    Google Scholar 

  11. Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344. https://doi.org/10.1016/0076-6879(94)35151-1

    Article  CAS  PubMed  Google Scholar 

  12. Acuña JJ, Jorquera MA, Martínez OA, Menezes-Blackburn D, Fernández MT, Marschner P et al (2011) Indole acetic acid and phytase activity produced by rhizosphere bacilli as affected by pH and metals. J Soil Sci Plant Nutr 11:1–12

    Google Scholar 

  13. Sgroy V, Cassan F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85(2):371–381. https://doi.org/10.1007/s00253-009-2116-3

    Article  CAS  PubMed  Google Scholar 

  14. Ngamau CN, Matiru VN, Tani A, Muthuri CW (2012) Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. Afr J Microbiol Res 6:6414–6422

    CAS  Google Scholar 

  15. Mefteh FB, Daoud A, Chenari Bouket A, Alenezi FN, Luptakova L, Rateb ME et al (2017) Fungal root microbiome from healthy and brittle leaf diseased date palm trees (Phoenix dactylifera L.) Reveals a hidden untapped arsenal of antibacterial and broad spectrum antifungal secondary metabolites. Front Microbiol 8:307. https://doi.org/10.3389/fmicb.2017.00307

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kloepper JW, Rodríguez-Kábana R, McInroy JA, Collins DJ (1991) Analysis of populations and physiological characterization of microorganisms in rhizospheres of plants with antagonistic properties to phytopathogenic nematodes. Plant Soil 136(1):95–102. https://doi.org/10.1007/BF02465224

    Article  Google Scholar 

  17. El Arbi A, Rochex A, Chataigné G, Béchet M, Lecouturier D, Arnauld S et al (2016) The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides. Res Microbiol 167(1):46–57. https://doi.org/10.1016/j.resmic.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  18. Ansari F, Ahmad I (2018) Plant growth promoting attributes and alleviation of salt stress to wheat by biofilm forming Brevibacterium sp. FAB3 isolated from rhizospheric soil. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2018.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  19. Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachishypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31(2):195–206. https://doi.org/10.1007/s00344-011-9231-y

    Article  CAS  Google Scholar 

  21. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analytical Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  23. Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115(2):251–257. https://doi.org/10.1034/j.1399-3054.2002.1150211.x

    Article  PubMed  Google Scholar 

  24. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127(4):1781–1787. https://doi.org/10.1104/pp.010497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162(6):897–904. https://doi.org/10.1016/S0168-9452(02)00037-7

    Article  CAS  Google Scholar 

  26. Rodriguez AA, Ramiro Lascano H, Bustos D, Taleisnik E (2007) Salinity-induced decrease in NADPH oxidase activity in the maize leaf blade elongation zone. J Plant Physiol 164(3):223–230. https://doi.org/10.1016/j.jplph.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  27. Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P (2021) Regulation of plant responses to salt stress. Int J Mol Sci. https://doi.org/10.3390/ijms22094609

    Article  PubMed  PubMed Central  Google Scholar 

  28. Souri MK, Tohidloo G (2019) Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chem Biol Technol Agric 6(1):26. https://doi.org/10.1186/s40538-019-0169-9

    Article  CAS  Google Scholar 

  29. Fattahi M, Mohammadkhani A, Shiran B, Baninasab B, Ravash R, Gogorcena Y (2021) Beneficial effect of mycorrhiza on nutritional uptake and oxidative balance in pistachio (Pistacia spp.) rootstocks submitted to drought and salinity stress. Sci Horticul 281:109937. https://doi.org/10.1016/j.scienta.2021.109937

    Article  CAS  Google Scholar 

  30. Hnilickova H, Kraus K, Vachova P, Hnilicka F (2021) Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants. https://doi.org/10.3390/plants10050845

    Article  PubMed  PubMed Central  Google Scholar 

  31. Souri M, Naiji M (2018) Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta scientiarum Polonorum Hortorum cultus. https://doi.org/10.24326/asphc.2018.2.14

    Article  Google Scholar 

  32. Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in french bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506. https://doi.org/10.3389/fmicb.2019.01506

    Article  PubMed  PubMed Central  Google Scholar 

  33. Manasa M, Ravinder P, Gopalakrishnan S, Srinivas V, Sayyed RZ, El Enshasy HA et al (2021) Co-inoculation of Bacillus spp. for growth promotion and iron fortification in Sorghum. Sustainability. https://doi.org/10.3390/su132112091

    Article  Google Scholar 

  34. Ben Khedher S, Mejdoub-Trabelsi B, Tounsi S (2021) Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth. Biol Control 152:104444. https://doi.org/10.1016/j.biocontrol.2020.104444

    Article  CAS  Google Scholar 

  35. Sandilya SP, Jeevan B, Subrahmanyam G, Dutta K, Vijay N, Bhattacharyya N et al (2022) Co-inoculation of native multi-trait plant growth promoting rhizobacteria promotes plant growth and suppresses Alternaria blight disease in castor (Ricinus communis L.). Heliyon 8(12):e11886. https://doi.org/10.1016/j.heliyon.2022.e11886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghosh S, Pal S, Chakraborty N (2015) The qualitative and quantitative assay of siderophore production by some microorganisms and effect of different media on its production. Int J Chem Sci 13:1621–1629

    CAS  Google Scholar 

  37. Egamberdieva D, Wirth S, Li L, Abd-Allah EF, Lindström K (2017) Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered 8(4):433–438. https://doi.org/10.1080/21655979.2016.1250983

    Article  CAS  PubMed  Google Scholar 

  38. Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ et al (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745. https://doi.org/10.3389/fmicb.2015.00745

    Article  PubMed  PubMed Central  Google Scholar 

  39. Etesami H, Alikhani HA (2017) Evaluation of Gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryzia sativa L.) pathogens. Eur J Plant Pathol 147(1):7–14. https://doi.org/10.1007/s10658-016-0981-z

    Article  CAS  Google Scholar 

  40. Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 47(3):621–627. https://doi.org/10.1016/j.bjm.2016.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee DG, Lee JM, Choi CG, Lee H, Moon JC, Chung N (2021) Effect of plant growth-promoting rhizobacterial treatment on growth and physiological characteristics of Triticum aestivum L. under salt stress. Appl Biol Chem 64(1):89. https://doi.org/10.1186/s13765-021-00663-w

    Article  CAS  Google Scholar 

  42. Alexander A, Singh VK, Mishra A (2020) Halotolerant PGPR Stenotrophomonas maltophilia BJ01 induces salt tolerance by modulating physiology and biochemical activities of Arachis hypogaea. Front Microbiol 11:568289. https://doi.org/10.3389/fmicb.2020.568289

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32. https://doi.org/10.1016/j.micres.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  44. Wungrampha S, Joshi R, Singla-Pareek SL, Pareek A (2018) Photosynthesis and salinity: are these mutually exclusive? Photosynthetica 56(1):366–381. https://doi.org/10.1007/s11099-017-0763-7

    Article  CAS  Google Scholar 

  45. Akbari A, Gharanjik S, Koobaz P, Sadeghi A (2020) Plant growth promoting Streptomyces strains are selectively interacting with the wheat cultivars especially in saline conditions. Heliyon 6(2):e03445. https://doi.org/10.1016/j.heliyon.2020.e03445

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167(3):527–533. https://doi.org/10.1016/j.plantsci.2004.04.020

    Article  CAS  Google Scholar 

  47. Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32(1):122–130. https://doi.org/10.1007/s00344-012-9283-7

    Article  CAS  Google Scholar 

  48. Manaf HH, Zayed MS (2015) Productivity of cowpea as affected by salt stress in presence of endomycorrhizae and Pseudomonas fluorescens. Ann Agric Sci 60(2):219–226. https://doi.org/10.1016/j.aoas.2015.10.013

    Article  Google Scholar 

  49. Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65(1):27–34. https://doi.org/10.1016/j.envexpbot.2008.06.001

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Higher Education and Scientific Research-Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

IG, NC and MNS conceived and designed the research. IG and NC conducted the experiments. IG, NC, MNS and RGB analyzed the data, contributed towards writing the manuscript, read and approved the manuscript.

Corresponding author

Correspondence to Imen Ghazala.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent of Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazala, I., Chiab, N., Saidi, M.N. et al. The Plant Growth-Promoting Bacteria Strain Bacillus mojavensis I4 Enhanced Salt Stress Tolerance in Durum Wheat. Curr Microbiol 80, 178 (2023). https://doi.org/10.1007/s00284-023-03288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03288-y

Navigation