Skip to main content
Log in

Dispersal and settling of translocated populations: a general study and a New Zealand amphibian case study

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Translocations are widely used to reintroduce threatened species to areas where they have disappeared. A continuum multi-species model framework describing dispersal and settling of translocated animals is developed. A variety of different dispersal and settling mechanisms, which may depend on local population density and/or a pheromone produced by the population, are considered. Steady state solutions are obtained using numerical techniques for each combination of dispersal and settling mechanism and for both single and double translocations at the same location. Each combination results in a different steady state population distribution and the distinguishing features are identified. In addition, for the case of a single translocation, a relationship between the radius of the settled region and the population size is determined, in some cases analytically. Finally, the model is applied to a case study of a double translocation of the Maud Island frog, Leiopelma pakeka. The models suggest that settling occurs at a constant rate, with repulsion evidently playing a significant role. Mathematical modelling of translocations is useful in suggesting design and monitoring strategies for future translocations, and as an aid in understanding observed behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong D., Soderquist T. and Southgate R. (1995). Designing experimental reintroductions as experiments. In: Serena, M. (eds) Reintroduction Biology of Australian and New Zealand Fauna., pp 27–29. Surrey Beatty and Sons, Chipping Norton

    Google Scholar 

  2. Armstrong D. and McLean I. (1995). New Zealand translocations: theory and practice. Pacific Conserv. Biol. 2: 39–54

    Google Scholar 

  3. Bell B.D. and Merton D.V. (2002). Critically endangered bird populations and their management. In: Norris, K. and Pain, D. (eds) Conserving Bird Biodiversity: General Principles and their Application, pp 105–138. Cambridge University Press, Cambridge

    Google Scholar 

  4. Bell B.D., Pledger S. and Dewhurst P.L. (2004). The fate of a population of the endemic frog Leiopelma pakeka (Anura : Leiopelmatidae) translocated to restored habitat on Maud Island, New Zealand. New Zealand J. Zool. 31(2): 123–131

    Google Scholar 

  5. Bell B.D., Daugherty C.H. and Hay J.M. (1998). Leiopelma pakeka n. sp. (Anura: Leiopelmatidae), a cryptic species of frog from Maud Island, New Zealand, and a reassessment of the conservation status of Leiopelma hamiltoni from Stephens Island. J. R. Soc. New Zealand 28: 39–54

    Google Scholar 

  6. Bertsch M., Gurtin M.E., Hilhorst D. and Peletier L.A. (1984). On interacting populations that disperse to avoid crowding - the effect of a sedentary colony. J. Math. Biol. 19(1): 1–12

    Article  MATH  Google Scholar 

  7. Bertsch M., Gurtin M.E., Hilhorst D. and Peletier L.A. (1985). On interacting populations that disperse to avoid crowding–preservation of segregation. J. Math. Biol. 23(1): 1–13

    MATH  Google Scholar 

  8. Bridgewater P. and Walton D.  (1995). The species triage: are we trying to retrieve the man overboard while the ship sinks?. In: Serena, M. (eds) Reintroduction biology of Australian and New Zealand fauna., pp ix–xii. Surrey Beatty and Sons, Chipping Norton

    Google Scholar 

  9. Broadbent S.R. and Kendall D.G. (1953). The random walk of Trichostrongylus retortaeformis. Biometrics 9(4): 460–466

    Article  Google Scholar 

  10. Edelstein-Keshet L. (1986). Mathematical theory for plant herbivore systems. J. Math. Biol. 24(1): 25–58

    MATH  Google Scholar 

  11. Edelstein-Keshet L. (1988). Mathematical Models in Biology, 1st edn. McGraw Hill, New York

    Google Scholar 

  12. Gurney W.S.C. and Nisbet R.M. (1975). Regulation of inhomogeneous populations. J. Theor. Biol. 52(2): 441–457

    Article  Google Scholar 

  13. Holmes E.E., Lewis M.A., Banks J.E. and Veit R.R. (1994). Partial-differential equations in ecology–spatial interactions and population-dynamics. Ecology 75(1): 17–29

    Article  Google Scholar 

  14. (IUCN), W.C.U.: The IUCN position statement on translocation of living organisms: introductions, re-introductions and re-stocking. World Conservation Union (IUCN) (1987)

  15. Keller E.F. and Segel L.A. (1971). Model for chemotaxis. J. Theor. Biol. 30(2): 225–234

    Article  Google Scholar 

  16. Kot M., Lewis M. and van den Driessche P. (1996). Dispersal data and the spread of invading organisms. Ecology 77(7): 2027–2042

    Article  Google Scholar 

  17. Lee J.S.F. and Waldman B. (2002). Communication by fecal chemosignals in an archaic frog, Leiopelma hamiltoni. Copeia 2(3): 679–686

    Article  Google Scholar 

  18. Lindenmayer D.  (1995). Some ecological considerations and computer-based approaches for the identification of potentially suitable release sites for reintroduction programmes. In: Serena, M. (eds) Reintroduction biology of Australian and New Zealand fauna., pp 1–5. Surrey Beatty and Sons, Chipping Norton

    Google Scholar 

  19. Morris W. and Kareiva P. (1991). How insect herbivores find suitable host plants: The interplay between random and nonrandom movement. In: Bernays, E. (eds) Insect-Plant Interactions, vol 3., pp. CRC Press, Florida

    Google Scholar 

  20. Murray J.D. (1989). Mathematical Biology, 1st edn. Springer, New York

    Google Scholar 

  21. Neubert M.G., Kot M. and Lewis M.A. (1995). Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Population Biol. 48(1): 7–43

    Article  MATH  Google Scholar 

  22. Newman, D.G.: Native Frog (Leiopelma spp.) Recovery Plan. Threatened Species Recovery Plan No. 18, Department of Conservation, Wellington, 40 pp. (1996)

  23. Namba T. (1989). Competition for space in a heterogeneous environment. J. Math. Biol. 27(1): 1–16

    MATH  Google Scholar 

  24. Okubo A. (1980). Diffusion and Ecological Problems: Mathematical Models, 1st edn. Springer, New York

    Google Scholar 

  25. Pattle R. (1959). Diffusion from an instantaneous point source with a concentration-dependent coefficient. Q. J. Mech. Appl. Math. 12(4): 407–409

    Article  MATH  Google Scholar 

  26. Rout T., Hauser C. and Possingham H. (2007). Minimise long-term loss or maximise short-term gain?: Optimal translocation strategies for threatened species. Ecol. Model. 201(1): 67–74

    Article  Google Scholar 

  27. Saunders A.  (1995). Translocations in New Zealand: an overview. In: Serena, M. (eds) Reintroduction biology of Australian and New Zealand fauna, pp 43–46. Surrey Beatty and Sons, Chipping Norton

    Google Scholar 

  28. Shigesada N. (1980). Spatial distribution of dispersing animals. J. Math. Biol. 9: 85–96

    Article  MATH  Google Scholar 

  29. Shigesada N., Kawasaki K. and Teramoto E. (1979). Spatial segregation of interacting species. J. Theor. Biol. 79(1): 83–99

    Article  Google Scholar 

  30. Skellam J.G. (1951). Random dispersal in theoretical populations. Biometrika 38(1-2): 196–218

    Article  MATH  Google Scholar 

  31. Tenhumberg B., Tyre A.J., Shea K. and Possingham H.P. (2004). Linking wild and captive populations to maximize species persistence: Optimal translocation strategies. Conserv. Biol. 18(5): 1304–1314

    Article  Google Scholar 

  32. Tocher M. and Newman D. (1997). Leaps and bounds - the conservation of New Zealand’s native frogs. Forest Bird 285: 14–20

    Google Scholar 

  33. Waldman B. and Bishop P.J. (2004). Chemical communication in an archaic anuran amphibian. Behav. Ecol. 15(1): 88–93

    Article  Google Scholar 

  34. Watson G.N. and Maller R.A. (1990). A Treatise on the Theory of Bessel Functions 2nd edition. Cambridge University Press, Cambridge

    Google Scholar 

  35. Williams E.J. (1961). Distribution of larvae of randomly moving insects. Aust. J. Biol. Sci. 14(4): 598–604

    Google Scholar 

  36. Witelski T.P. (1997). Segregation and mixing in degenerate diffusion in population dynamics. J. Math. Biol. 35(6): 695–712

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry A. Landman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trewenack, A.J., Landman, K.A. & Bell, B.D. Dispersal and settling of translocated populations: a general study and a New Zealand amphibian case study. J. Math. Biol. 55, 575–604 (2007). https://doi.org/10.1007/s00285-007-0096-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0096-4

Keywords

Mathematics Subject Classification (2000)

Navigation