Skip to main content
Log in

Optimal control approach to termination of re-entry waves in cardiac electrophysiology

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This work proposes an optimal control approach for the termination of re-entry waves in cardiac electrophysiology. The control enters as an extracellular current density into the bidomain equations which are well established model equations in the literature to describe the electrical behavior of the cardiac tissue. The optimal control formulation is inspired, in part, by the dynamical systems behavior of the underlying system of differential equations. Existence of optimal controls is established and the optimality system is derived formally. The numerical realization is described in detail and numerical experiments, which demonstrate the capability of influencing and terminating reentry phenomena, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashihara T, Namba T, Ito M, Ikeda T, Nakazava K, Trayanova N (2004) Spiral wave control by a localized stimulus:. J Cardiovasc Electrophysiol 15(2): 226–233

    Article  Google Scholar 

  • Aubin JP (1963) Un thěorème de compacitě. C R Acad Sci 256: 5042–5044

    MathSciNet  MATH  Google Scholar 

  • Bardy GH, Hofer B, Johnson G, Kudenchuk PJ, Poole JE, Dolack GL, Gleva M, Mitchell R, Kelso D (1993) Implantable transvenous cardioverter-defibrillators. Circulation 87(4): 1152–1168

    Article  Google Scholar 

  • Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Kornhuber R, Ohlberger M, Sander O (2008) A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82(2): 121–138

    Article  MathSciNet  MATH  Google Scholar 

  • Bishop MJ, Rowley A, Rodriguez B, Plank G, Gavaghan DJ, Bub G (2011) The role of photon scattering in voltage-calcium fluorescent recordings of ventricular fibrillation. Biophys J 101(2): 307–318

    Article  Google Scholar 

  • Bochev P, Lehoucq RB (2005) On the finite element solution of the pure Neumann problem. SIAM Rev 47: 50–66

    Article  MathSciNet  MATH  Google Scholar 

  • Bourgault Y, Coudiére Y, Pierre C (2009) Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal: Real World Appl 10(1): 458–482

    Article  MathSciNet  MATH  Google Scholar 

  • Chen PS, Shibata N, Dixon EG, Martin RO, Ideker RE (1986) Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation 73(5): 1022–1028

    Article  Google Scholar 

  • Cheng DK, Tung L, Sobie EA (1999) Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol 277(1 Pt 2): H351–H362

    Google Scholar 

  • de Bakker JMT, van Rijen HMV (2006) Continuous and discontinuous propagation in heart muscle. J Cardiovasc Electrophysiol 17(5): 567–573

    Article  Google Scholar 

  • De Bruin K, Krassowska W (1998) Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann Biomed Eng 26: 584–596

    Article  Google Scholar 

  • Gustafsson K, Lundh M, Söderlind G (1988) A PI stepsize control for the numerical solution of ordinary differential equations. BIT 28(2): 270–287

    Article  MathSciNet  MATH  Google Scholar 

  • Henriquez CS (1993) Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng 21: 1–77

    MathSciNet  Google Scholar 

  • Hillman EMC, Bernus O, Pease E, Bouchard MB, Pertsov A (2007) Depth-resolved optical imaging of transmural electrical propagation in perfused heart. Opt Express 15(26): 17827–17841

    Article  Google Scholar 

  • Hooks DA, Trew ML (2008) Construction and validation of a plunge electrode array for three-dimensional determination of conductivity in the heart. IEEE Trans Biomed Eng 55(2 Pt 1): 626–635

    Article  Google Scholar 

  • Kuijpers NHL, Keldermann RH, Arts T., Hilbers PAJ (2005) Computer simulations of successful defibrillation in decoupled and non-uniform cardiac tissue. Europace 7(s2): S166–S177

    Article  Google Scholar 

  • Kunisch K, Wagner M (2011) Optimal control of the bidomain system (ii): uniqueness and regularity theorems for weak solutions. University of Graz

  • Kuppahally SS, Akoum N, Burgon NS, Badger TJ, Kholmovski EG, Vijayakumar S, Rao SN, Blauer J, Fish EN, Dibella EVR, Macleod RS, McGann C, Litwin SE, Marrouche NF (2010) Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayed-enhancement MRI. Circ Cardiovasc Imaging 3(3): 231–239

    Article  Google Scholar 

  • Lang J, Teleaga D (2008) Towards a fully space-time adaptive FEM for magnetoquasistatics. IEEE Trans Magnet 44(6): 1238–1241

    Article  Google Scholar 

  • Murray JD (2001) Mathematical biology: I. An introduction. Springer, Heidelberg

    Google Scholar 

  • Nagaiah C, Kunisch K (2011) Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology. Appl Numer Math 61: 53–65

    Article  MathSciNet  MATH  Google Scholar 

  • Nagaiah C, Kunisch K, Plank G (2011) Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput Optim Appl 49: 149–178. doi:10.1007/s10589-009-9280-3

    Article  MathSciNet  MATH  Google Scholar 

  • Niederer S, Mitchell L, Smith N, Plank G (2011) Simulating human cardiac electrophysiology on clinical time-scales. Front Physiol 2: 14

    Article  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Pavarino LF, Scacchi S (2008) Multilevel additive Schwarz preconditioners for the bidomain reaction-diffusion system. SIAM J Sci Comput 31: 420–443

    Article  MathSciNet  MATH  Google Scholar 

  • Plank G, Leon LJ, Kimber S, Vigmond EJ (2005) Defibrillation depends on conductivity fluctuations and the degree of disorganization in reentry patterns. J Cardiovasc Electrophysiol 16(2): 205–216

    Article  Google Scholar 

  • Plank G, Liebmann M, dos Santos RW, Vigmond E, Haase G (2007) Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans Biomed Eng 54(4): 585–596

    Article  Google Scholar 

  • Plank G, Burton RA, Hales P, Bishop M, Mansoori T, Bernabeu MO, Garny A, Prassl AJ, Bollensdorff C, Mason F, Mahmood F, Rodriguez B, Grau V, Schneider JAE, Gavaghan D, Kohl P (2009) Generation of histo-anatomically representative models of the individual heart: tools and application. Philos Trans R Soc A: Math Phys Eng Sci 367(1896): 2257–2292

    Article  MATH  Google Scholar 

  • Plonsey R (1988) Bioelectric sources arising in excitable fibers (ALZA lecture). Ann Biomed Eng 16(6): 519–546

    Article  Google Scholar 

  • Potse M, Dube B, Richer J, Vinet A, Gulrajani R (2006) A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng 53(12): 2425–2435

    Article  Google Scholar 

  • Prassl AJ, Kickinger F, Ahammer H, Grau V, Schneider JE, Hofer E, Vigmond EJ, Trayanova NA, Plank G (2009) Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems. IEEE Trans Biomed Eng 56(5): 1318–1330

    Article  Google Scholar 

  • Qu F, Ripplinger CM, Nikolski VP, Grimm C, Efimov IR (2007) Three-dimensional panoramic imaging of cardiac arrhythmias in rabbit heart. J Biomed Opt 12(4): 044019

    Article  Google Scholar 

  • Rogers JM, McCulloch AD (1994) A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans Biomed Eng 41: 743–757

    Article  Google Scholar 

  • Roth BJ (1997) Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans Biomed Eng 44(4): 326–328

    Article  Google Scholar 

  • Sepulveda NG, Roth BJ, Wikswo JP Jr (1989) Current injection into a two-dimensional anisotropic bidomain. Biophys J 55(5): 987–999

    Article  Google Scholar 

  • Sobie EA, Susil RC, Tung L (1997) A generalized activating function for predicting virtual electrodes in cardiac tissue. Biophys J 73(3): 1410–1423

    Article  Google Scholar 

  • Trayanova NA (2011) Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. Circ Res 108(1): 113–128

    Article  Google Scholar 

  • Tung L (1978) A bi-domain model for describing ischemic myocardial DC potentials. PhD thesis, MIT, Cambridge

  • van der Vorst HA (1994) Bi-CGSTAB: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13: 631–644

    Google Scholar 

  • Vigmond EJ, dos Santos RW, Prassl AJ, Deo M, Plank G (2008) Solvers for the cardiac bidomain equations. Prog Biophys Mol Biol 96(1–3): 3–18

    Article  Google Scholar 

  • Vigmond E, Vadakkumpadan F, Gurev V, Arevalo H, Deo M, Plank G, Trayanova N (2009) Towards predictive modelling of the electrophysiology of the heart. Exp Physiol 94(5): 563–577

    Article  Google Scholar 

  • Wellner M, Bernus O, Mironov SF, Pertsov AM (2006) Multiplicative optical tomography of cardiac electrical activity. Phys Med Biol 51(18): 4429–4446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kunisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaiah, C., Kunisch, K. & Plank, G. Optimal control approach to termination of re-entry waves in cardiac electrophysiology. J. Math. Biol. 67, 359–388 (2013). https://doi.org/10.1007/s00285-012-0557-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0557-2

Keywords

Mathematics Subject Classification (2000)

Navigation