Skip to main content

Advertisement

Log in

Sample path properties of the average generation of a Bellman–Harris process

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Motivated by a recently proposed design for a DNA coded randomised algorithm that enables inference of the average generation of a collection of cells descendent from a common progenitor, here we establish strong convergence properties for the average generation of a super-critical Bellman–Harris process. We further extend those results to a two-type Bellman–Harris process where one type can give rise to the other, but not vice versa. These results further affirm the estimation method’s potential utility by establishing its long run accuracy on individual sample-paths, and significantly expanding its remit to encompass cellular development that gives rise to differentiated offspring with distinct population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404(6774):193

    Article  Google Scholar 

  • Akinduro O, Weber TS, Ang H, Haltalli MLR, Ruvio N, Duarte D, Rashidi NM, Hawkins ED, Duffy KR, Lo-Celso C (2018) Proliferation dynamics of acute myeloid leukaemia and haematopoietic progenitors competing for bone marrow space. Nat Commun 9:519

    Article  Google Scholar 

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89(21):10114–10118

    Article  Google Scholar 

  • Asmussen S (1998) A probabilistic look at the Wiener–Hopf equation. SIAM Rev 40(2):189–201

    Article  MathSciNet  MATH  Google Scholar 

  • Asmussen S, Hering H (1983) Branching processes. Birkhauser, Boston

    Book  MATH  Google Scholar 

  • Athreya KB, Jagers P (2012) Classical and modern branching processes. Springer, Berlin

    Google Scholar 

  • Athreya KB, Ney PE (1972) Branching processes. Courier Corporation, North Chelmsford

    Book  MATH  Google Scholar 

  • Athreya KB, Kaplan N (1976) Convergence of the age distribution in the one-dimensional supercritical age-dependent branching process. Ann Probab 4(1):38–50

    Article  MathSciNet  MATH  Google Scholar 

  • Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B, Gräf P, Verschoor A, Schiemann M, Höfer T, Busch DH (2013) Disparate individual fates compose robust CD8+ T cell immunity. Science 340(6132):630–635

    Article  Google Scholar 

  • Carlson CA, Kas A, Kirkwood R, Hays LE, Preston BD, Salipante SJ, Horwitz MS (2012) Decoding cell lineage from acquired mutations using arbitrary deep sequencing. Nat Methods 9(1):78–80

    Article  Google Scholar 

  • Casella G, Berger RL (2002) Statistical inference, vol 2. Duxbury, Pacific Grove

    MATH  Google Scholar 

  • De Boer RJ, Perelson AS (2013) Quantifying T lymphocyte turnover. J Theor Biol 327:45–87

    Article  MathSciNet  MATH  Google Scholar 

  • Deenick EK, Hasbold J, Hodgkin PD (1999) Switching to IgG3, IgG2b, and IgA is division linked and independent, revealing a stochastic framework for describing differentiation. J Immunol 163(9):4707–4714

    Google Scholar 

  • Duarte D, Hawkins ED, Akinduro O, Ang H, De Filippo K, Kong IY, Haltalli M, Ruivo N, Straszkowski L, Vervoort SJ, McLean C, Weber TS, Khorshed R, Pirillo C, Wei A, Ramasamy SK, Kusumbe AP, Duffy K, Adams RH, Purton LE, Carlin LM, Lo Celso C (2018) Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22(1):64–77

    Article  Google Scholar 

  • Duffy KR, Subramanian VG (2009) On the impact of correlation between collaterally consanguineous cells on lymphocyte population dynamics. J Math Biol 59(2):255–285

    Article  MathSciNet  MATH  Google Scholar 

  • Duffy KR, Wellard CJ, Markham JF, Zhou JHS, Holmberg R, Hawkins ED, Hasbold J, Dowling MR, Hodgkin PD (2012) Activation-induced B cell fates are selected by intracellular stochastic competition. Science 335(6066):338–341

    Article  Google Scholar 

  • Feller W (1968) An introduction to probability theory and its applications, vol I. Wiley, London

    MATH  Google Scholar 

  • Foudi A, Hochedlinger K, Van Buren D, Schindler JW, Jaenisch R, Carey V, Hock H (2009) Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat Biotechnol 27(1):84–90

    Article  Google Scholar 

  • Frank SA, Iwasa Y, Nowak MA (2003) Patterns of cell division and the risk of cancer. Genetics 163(4):1527–1532

    Google Scholar 

  • Giurumescu CA, Kang S, Planchon TA, Betzig E, Bloomekatz J, Yelon D, Cosman P, Chisholm AD (2012) Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos. Development 139(22):4271–4279

    Article  Google Scholar 

  • Gomes FL, Zhang G, Carbonell F, Correa JA, Harris WA, Simons BD, Cayouette M (2011) Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 138(2):227–235

    Article  Google Scholar 

  • Haccou P, Jagers P, Vatutin VA (2005) Branching processes: variation, growth, and extinction of populations. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nat Genet 345(6274):458–460

    Google Scholar 

  • Harris TE (1963) The theory of branching processes. Springe, Berlin

    Book  MATH  Google Scholar 

  • Hawkins ED, Hommel M, Turner ML, Battye FL, Markham JF, Hodgkin PD (2007a) Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat Protoc 2(9):2057–2067

    Article  Google Scholar 

  • Hawkins ED, Turner ML, Dowling MR, van Gend C, Hodgkin PD (2007b) A model of immune regulation as a consequence of randomized lymphocyte division and death times. Proc Natl Acad Sci USA 104:5032–5037

    Article  Google Scholar 

  • Hawkins ED, Markham JF, McGuinness LP, Hodgkin PD (2009) A single-cell pedigree analysis of alternative stochastic lymphocyte fates. Proc Natl Acad Sci USA 106(32):13457–13462

    Article  Google Scholar 

  • Hawkins ED, Duarte D, Akinduro O, Khorshed RA, Passaro D, Nowicka M, Straszkowski L, Scott MK, Rothery S, Ruivo N, Foster K, Waibel M, Johnstone RW, Harrison SJ, Westerman DA, Quach H, Gribben J, Robinson MD, Purton LE, Bonnet D, Lo Celso C (2016) T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 538(7626):518–522

    Article  Google Scholar 

  • Hills M, Lücke K, Chavez EA, Eaves CJ, Lansdorp PM (2009) Probing the mitotic history and developmental stage of hematopoietic cells using single telomere length analysis (STELA). Blood 113(23):5765–5775

    Article  Google Scholar 

  • Hodgkin PD, Lee J-H, Lyons AB (1996) B cell differentiation and isotype switching is related to division cycle number. J Exp Med 184(1):277–281

    Article  Google Scholar 

  • Hong WK, Bast RC Jr, Hait WN, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Frei III E (2010) Holland–Frei cancer medicine, 8th edn. PMPH, New York

    Google Scholar 

  • Horton MB, Prevedello G, Marchingo JM, Zhou JHS, Duffy KR, Heinzel S, Hodgkin PD (2018) Multiplexed division tracking dyes for proliferation-based clonal lineage tracing. J Immunol 201(3):1097–1103

    Article  Google Scholar 

  • Jagers P (1969a) The proportions of individuals of different kinds in two-type populations. A branching process problem arising in biology. J Appl Probab 6(2):249–260

    Article  MathSciNet  MATH  Google Scholar 

  • Jagers P (1969b) Renewal theory and the almost sure convergence of branching processes. Ark Mat 7(6):495–504

    Article  MathSciNet  MATH  Google Scholar 

  • Jagers P (1975) Branching processes with biological applications. Wiley, London

    MATH  Google Scholar 

  • Jagers P (1989) General branching processes as Markov fields. Stoch Process Their Appl 32(2):183–212

    Article  MathSciNet  MATH  Google Scholar 

  • Jagers P (1992) Stabilities and instabilities in population dynamics. J Appl Probab 29(4):770–780

    Article  MathSciNet  MATH  Google Scholar 

  • Kimmel M, Axelrod DE (2002) Branching processes in biology. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91(5):661–672

    Article  Google Scholar 

  • Levinson N (1960) Limiting theorems for age-dependent branching processes. Ill J Math 4(1):100–118

    Article  MathSciNet  MATH  Google Scholar 

  • Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243(1):147–154

    Article  Google Scholar 

  • Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Methods 171(1):131–137

    Article  Google Scholar 

  • Marchingo JM, Kan A, Sutherland RM, Duffy KR, Wellard CJ, Belz GT, Lew AM, Dowling MR, Heinzel S, Hodgkin PD (2014) Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion. Science 346(6213):1123–1127

    Article  Google Scholar 

  • Marchingo JM, Prevedello G, Kan AJ, Heinzel S, Hodgkin PD, Duffy KR (2016) T cell stimuli independently sum to regulate an inherited clonal division fate. Nat Commun 7:13540

    Article  Google Scholar 

  • Mascré G, Dekoninck S, Drogat B, Youssef KK, Brohée S, Sotiropoulou PA, Simons BD, Blanpain C (2012) Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489(7415):257–264

    Article  Google Scholar 

  • Mendelsohn J, Howley PM, Israel MA, Gray JW, Thompson CB (2015) The molecular basis of cancer. Saunders, Philadelphia

    Google Scholar 

  • Merlo LMF, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6(12):924–935

    Article  Google Scholar 

  • Mode CJ (1971) Multitype branching processes. Theory and applications. Elsevier, New York

    MATH  Google Scholar 

  • Mukherjea A, Rao M, Suen S (2006) A note on moment generating functions. Stat Probab Lett 76(11):1185–1189

    Article  MathSciNet  MATH  Google Scholar 

  • Nordon RE, Ko K-H, Odell R, Schroeder T (2011) Multi-type branching models to describe cell differentiation programs. J Theor Biol 277(1):7–18

    Article  MATH  Google Scholar 

  • Pauklin S, Vallier L (2013) The cell-cycle state of stem cells determines cell fate propensity. Cell 155(1):135–147

    Article  Google Scholar 

  • Powell EO (1955) Some features of the generation times of individual bacteria. Biometrika 42:16–44

    Article  Google Scholar 

  • Quah BJC, Parish CR (2012) New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. J Immunol Methods 379(1):1–14

    Article  Google Scholar 

  • Reizel Y, Chapal-Ilani N, Adar R, Itzkovitz S, Elbaz J, Maruvka YE, Segev E, Shlush LI, Dekel N, Shapiro E (2011) Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. PLoS Genet 7(7):e1002192

    Article  Google Scholar 

  • Resnick SI (2013) Adventures in stochastic processes. Springer, Berlin

    MATH  Google Scholar 

  • Richards JL, Zacharias AL, Walton T, Burdick JT, Murray JI (2013) A quantitative model of normal caenorhabditis elegans embryogenesis and its disruption after stress. Dev Biol 374(1):12–23

    Article  Google Scholar 

  • Rudin W (1976) Principles of mathematical analysis, 3rd edn. International series in pure and applied mathematics. McGraw-Hill Book Co., New York

    MATH  Google Scholar 

  • Rufer N, Brümmendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190(2):157–168

    Article  Google Scholar 

  • Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487–498

    Article  Google Scholar 

  • Samuels ML (1971) Distribution of the branching-process population among generations. J Appl Probab 8:655–667

    Article  MathSciNet  MATH  Google Scholar 

  • Shibata D, Navidi W, Salovaara R, Li Z-H, Aaltonen LA (1996) Somatic microsatellite mutations as molecular tumor clocks. Nat Med 2(6):676–681

    Article  Google Scholar 

  • Shibata D, Tavaré S (2006) Counting divisions in a human somatic cell tree. Cell Cycle 5(6):610–614

    Article  Google Scholar 

  • Smith JA, Martin L (1973) Do cells cycle? Proc Natl Acad Sci USA 70(4):1263–1267

    Article  Google Scholar 

  • Subramanian VG, Duffy KR, Turner ML, Hodgkin PD (2008) Determining the expected variability of immune responses using the cyton model. J Math Biol 56(6):861–892

    Article  MathSciNet  MATH  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119

    Article  Google Scholar 

  • Tangye SG, Avery DT, Deenick EK, Hodgkin PD (2003) Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J Immunol 170(2):686–694

    Article  Google Scholar 

  • Tomasetti C, Vogelstein B (2015) Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347(6217):78–81

    Article  Google Scholar 

  • Tsao J-L, Yatabe Y, Salovaara R, Järvinen HJ, Mecklin J-P, Aaltonen LA, Tavaré S, Shibata D (2000) Genetic reconstruction of individual colorectal tumor histories. Proc Natl Acad Sci USA 97(3):1236–1241

    Article  Google Scholar 

  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303(5656):359–363

    Article  Google Scholar 

  • Turner M, Hawkins E, Hodgkin PD (2008) Quantitative regulation of B cell division destiny by signal strength. J Immunol 181(1):374–382

    Article  Google Scholar 

  • Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 91(21):9857–9860

    Article  Google Scholar 

  • Wasserstrom A, Frumkin D, Adar R, Itzkovitz S, Stern T, Kaplan S, Shefer G, Shur I, Zangi L, Reizel Y, Harmelin A, Dor Y, Dekel N, Reisner Y, Benayahu D, Tzahor E, Segal E, Shapiro EY (2008) Estimating cell depth from somatic mutations. PLoS Comput Biol 4(5):e1000058

    Article  MathSciNet  Google Scholar 

  • Watson HW, Galton F (1875) On the probability of the extinction of families. J Anthropol Inst Great Br Irel 4:138–144

    Article  Google Scholar 

  • Weber TS, Perié L, Duffy KR (2016) Inferring average generation via division-linked labeling. J Math Biol 73(2):491–523

    Article  MathSciNet  MATH  Google Scholar 

  • Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, Bodnar AG, Lichtsteiner S, Kim NW, Trager JB, Taylor RD, Carlos R, Andrews WH, Wright WE, Shay JW, Harley CB, Morin GB (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 17(4):498–502

    Article  Google Scholar 

  • Zhang B, Dai M, Li Q-J, Zhuang Y (2013) Tracking proliferative history in lymphocyte development with cre-mediated sister chromatid recombination. PLoS Genet 9(10):e1003887, 10

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science Foundation Ireland Grant 12 IP 1263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken R. Duffy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meli, G., Weber, T.S. & Duffy, K.R. Sample path properties of the average generation of a Bellman–Harris process. J. Math. Biol. 79, 673–704 (2019). https://doi.org/10.1007/s00285-019-01373-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-019-01373-0

Keywords

Mathematics Subject Classification

Navigation