Skip to main content
Log in

Multiplicity dependence of Bose-Einstein correlations in hadronic Z0 decays

  • Published:
Zeitschrift für Physik C: Particles and Fields

Abstract

Bose-Einstein correlations between like charged track pairs have been studied using a sample of approximately 3.6 million multihadronic Z0 decays collected with the OPAL detector at LEP. The radius of the emitting sourceR and the chaoticity parameterλ were studied using two parametrisations, the Goldhaber (G) parametrisation and the one-dimensional Kopylov-Podgoretskii (KP) parametrisation. The radiiR G andR KP are found to increase linearly with the average observed charged multiplicityn ch , with changes with respect to a unit increase inn ch of

$$\begin{gathered} \frac{1}{{\langle R_G \rangle }}\frac{{\Delta R_G }}{{\Delta n_{ch} }} = (3.6 \pm 0.6) \cdot 10^{ - 3} and \hfill \\ \frac{1}{{\langle R_{KP} \rangle }}\frac{{\Delta R_{KP} }}{{\Delta n_{ch} }} = (3.4 \pm 1.0) \cdot 10^{ - 3} . \hfill \\ \end{gathered} $$

where the 〈R〉 are the radius values measured in the inclusive event sample. The chaoticity parametersλ G andλ KP decrease with increasing charged multiplicity. It is shown that the increase ofR with multiplicity may be connected with differences between two- and three-jet events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. De Wolf, On Bose-Einstein correlations and generating functions, Proceedings of the XXIV Int. Symp. on Multiparticle Dynamics, Eds. A. Giovannini, S. Lupia and R. Ugoccioni, World Scientific, Singapore (1994) 15; S. Haywood, Where are we going with Bose-Einstein — a mini review, RAL-94-074.

    Google Scholar 

  2. OPAL Collab., P. D. Acton et al., Phys. Lett.B 267 (1991) 143.

    ADS  Google Scholar 

  3. TPC Collab., H. Aihara et al., Phys. Rev.D 31 (1985) 996.

    ADS  Google Scholar 

  4. ALEPH Collab., D. Decamp et al., Z. Phys.C 54 (1992) 75.

    ADS  Google Scholar 

  5. AFS Collab., T. Åkesson et al., Phys. Lett.B 129 (1983) 269;

    ADS  Google Scholar 

  6. AFS Collab., T. Åkesson et al., Phys. Lett.B 187 (1987) 420.

    ADS  Google Scholar 

  7. SFM Collab., A. Breakstone et al., Z. Phys.C 33 (1987) 333.

    ADS  Google Scholar 

  8. UA1 Collab., C. Albajar et al., Phys. Lett.B 226 (1989) 410.

    ADS  Google Scholar 

  9. NA35 Collab., A. Bamberger et al., Z. Phys.C 38 (1988) 79.

    ADS  Google Scholar 

  10. G. D. Lafferty, Z. Phys.C 60 (1993) 659.

    ADS  Google Scholar 

  11. G. Goldhaber, S. Goldhaber, W. Lee, and A. Pais, Phys. Rev. Lett.3 (1959) 181.

    Article  ADS  Google Scholar 

  12. G. I. Kopylov and M. I. Podgoretskii, Sov. J. Nucl. Phys.18 (1973) 656.

    Google Scholar 

  13. G. Cocconi, Phys. Lett.B 49 (1974) 459.

    ADS  Google Scholar 

  14. EHS/NA22 Collab., N. M. Agababian et al., Z. Phys.C 59 (1993) 195.

    ADS  Google Scholar 

  15. OPAL Collab., K. Ahmet et al., Nucl. Instr. MethodsA 305 (1991) 275.

    Google Scholar 

  16. P. P. Allport et al., Nucl. Instr. Methods,A324 (1993) 34:

    ADS  Google Scholar 

  17. P. P. Allport et al., Nucl. Instr. Methods,A346 (1994) 476.

    ADS  Google Scholar 

  18. M. Hauschild et al., Nucl. Instr. MethodsA 314 (1992) 174.

    Google Scholar 

  19. OPAL Collab., M. Arignon et al., Nucl. Instr. MethodsA 313 (1992) 103.

    ADS  Google Scholar 

  20. OPAL Collab., G. Alexander et al., Z. Phys.C 52 (1991) 175.

    ADS  Google Scholar 

  21. T. Sjöstrand, Comp. Phys. Comm.39 (1986) 347;

    Article  ADS  Google Scholar 

  22. T. Sjöstrand and M. Bengtsson, Comp. Phys. Comm.43 (1987) 367.

    Article  ADS  Google Scholar 

  23. OPAL Collab., P. D. Acton et al., Z. Phys.C 58 (1993) 387;

    ADS  Google Scholar 

  24. OPAL Collab., M. Z. Akrawy et al., Z. Phys.C 47 (1990) 505.

    ADS  Google Scholar 

  25. J. Allison et al., Nucl. Instr. MethodsA 317 (1992) 47.

    ADS  Google Scholar 

  26. OPAL Collab., R. Akers et al., Phys. Lett.B 320 (1994) 417.

    ADS  Google Scholar 

  27. OPAL Collab., P. D. Acton et al., Z. Phys.C 60 (1993) 579.

    ADS  Google Scholar 

  28. OPAL Collab., R. Akers et al., Z. Phys.C 65 (1995) 17.

    ADS  Google Scholar 

  29. M. Gyulassy et al., Phys. Rev.C 20 (1979) 2267.

    ADS  Google Scholar 

  30. M. G. Bowler, Phys. Lett.B 270 (1991) 69.

    ADS  Google Scholar 

  31. M. Biyajima, T. Mizoguchi, T. Osada, and G. Wilk, Phys. Lett.B 353 (1995) 340.

    ADS  Google Scholar 

  32. L. Montanet et al., Phys. Rev.D 50 (1994) 1173.

    ADS  Google Scholar 

  33. OPAL Collab., P. Acton et al., Z. Phys.C 56 (1992) 521.

    ADS  Google Scholar 

  34. DELPHI Collab., P. Abreu et al., Phys. Lett.B 286 (1992) 201;

    ADS  Google Scholar 

  35. DELPHI Collab., P. Abreu et al., Z. Phys.C 63 (1994) 17.

    ADS  Google Scholar 

  36. JADE Collab., W. Bartel et al., Z. Phys.C 33 (1986) 23;

    ADS  Google Scholar 

  37. JADE Collab., S. Bethke et al., Phys. Lett.B 213 (1988) 235.

    ADS  Google Scholar 

  38. OPAL Collaboration, R. Akers et al., Z. Phys.C63 (1994) 197.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

OPAL Collaboration., Alexander, G., Allison, J. et al. Multiplicity dependence of Bose-Einstein correlations in hadronic Z0 decays. Z. Phys. C - Particles and Fields 72, 389 (1996). https://doi.org/10.1007/s002880050259

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/s002880050259

Keywords

Navigation