Skip to main content
Log in

UV-induced switchable wettability between superhydrophobic and superhydrophilic polypropylene surfaces with an improvement of adhesion properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polypropylene (PP) surfaces with reversible switching between superhydrophobicity and superhydrophilicity were fabricated by a simple dip-coating method. The reversibility was obtained using a combination of UV and thermal treatment cycles. Superhydrophobic polymeric surfaces were prepared by dipping PP substrates in a hot suspension of xylene containing TiO2 nanoparticles (NPs) functionalized with trimethoxypropyl silane (TMPSi). This resulted in superhydrophobic PP surfaces with water contact angles (WCA) of 158° that were converted to superhydrophilic (WCA ~0°) by UV irradiation. However, the superhydrophobic state can be easily recovered using a soft thermal treatment (100 °C for 2 h). A continuous switch in the extreme wettability properties of the surfaces was achieved using cycles of UV irradiation and thermal treatments. Additionally, the hydrophilicity obtained by UV illumination improved the weak adhesion that existed between the nanocoating and the PP surface before the UV treatment by about 90 %. Detailed high-resolution X-ray photoelectron spectroscopy data showed that the relative concentration of the hydrophilic component, Ti–OH, in the O 1s signal increased from 32 % to more than 50 % when the surface was irradiated. Simultaneously, the Ti 2p signal showed a reduction of Ti(IV) to Ti(III) after the photochemical treatment leading to a surface hydroxylation and the superhydrophilicity found after UV irradiation. This paper reports the preparation of PP surfaces with excellent controllable wettability with important applications where improvement in the coating adhesion is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zach M, Hagglund C, Chakarov D, Kasemo B (2006) Nanoscience and nanotechnology for advanced energy systems. Curr Opin Solid State Mater Sci 10(3–4):132–143

    Article  Google Scholar 

  2. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    Article  CAS  Google Scholar 

  3. Rehim MHA, Youssef AM, Ghanem A (2015) Polystyrene/hydrophobic TiO2 nanobelts as a novel packaging material. Polym Bull 72(9):2353–2362

    Article  Google Scholar 

  4. Behniafar H, Amirkhalili SK (2014) Poly(4,4′-oxydiphenylene-pyromellitimide)/TiO2 nanocomposites with surface-modified titanium dioxide using 4,4′-methylene diphenyl diisocyanate. Polym Bull 71(4):775–785

    Article  CAS  Google Scholar 

  5. Ferdowsi P, Mokhtari J (2015) Fabrication and characterization of electrospun PVA/CdS and PVA/TiO2 nanocomposite thin films as n-type semiconductors. Polym Bull 72(9):2363–2375

    Article  CAS  Google Scholar 

  6. Zehetmeyer G, Scheibel JM, Soares RMD, Weibel DE, Oviedo MAS, Oliveira RVB (2013) Morphological, optical, and barrier properties of PP/MMT nanocomposites. Polym Bull 70(8):2181–2191

    Article  CAS  Google Scholar 

  7. Celia E, Darmanin T, de Givenchy ET, Amigoni S, Guittard F (2013) Recent advances in designing superhydrophobic surfaces. J Colloid Interface Sci 402:1–18

    Article  CAS  Google Scholar 

  8. Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci 169(2):80–105

    Article  CAS  Google Scholar 

  9. Nishimoto S, Bhushan B (2013) Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv 3(3):671–690

    Article  CAS  Google Scholar 

  10. Neto AI, Meredith HJ, Jenkins CL, Wilker JJ, Mano JF (2013) Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. RSC Adv 3(24):9352–9356

    Article  CAS  Google Scholar 

  11. Gao Z, Ma M, Zhai X, Zhang M, Zang D, Wang C (2015) Improvement of chemical stability and durability of superhydrophobic wood surface via a film of TiO2 coated CaCO3 micro-/nano-composite particles. RSC Adv 5(79):63978–63984

    Article  CAS  Google Scholar 

  12. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(1):988–994

    Article  CAS  Google Scholar 

  13. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  14. Chagas GR, Darmanin T, Guittard F (2015) Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles. Beilstein J Nanotechnol 6:2078–2087

    Article  CAS  Google Scholar 

  15. Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9):3517–3519

    Article  CAS  Google Scholar 

  16. Marmur A (2008) From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir 24(14):7573–7579

    Article  CAS  Google Scholar 

  17. Marmur A (2013) Superhydrophobic and superhygrophobic surfaces: from understanding non-wettability to design considerations. Soft Matter 9(33):7900–7904

    Article  CAS  Google Scholar 

  18. Yue M, Zhou B, Jiao K, Qian X, Xu Z, Teng K, Zhao L, Wang J, Jiao Y (2015) Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF4 microwave plasma treatment. Appl Surf Sci 327:93–99

    Article  CAS  Google Scholar 

  19. Feng N, Zhao H, Zhan J, Tian D, Li H (2012) Switchable wettability sensor for ion pairs based on calix[4]azacrown clicking. Org Lett 14(8):1958–1961

    Article  CAS  Google Scholar 

  20. Abate AR, Thiele J, Weinhart M, Weitz DA (2010) Patterning microfluidic device wettability using flow confinement. Lab Chip 10(14):1774–1776

    Article  CAS  Google Scholar 

  21. Wu J, Jiang Y, Jiang D, He J, Cai G, Wang J (2015) The fabrication of pH-responsive polymeric layer with switchable surface wettability on cotton fabric for oil/water separation. Mater Lett 160:384–387

    Article  CAS  Google Scholar 

  22. Xiong S, Kong L, Huang J, Chen X, Wang Y (2015) Atomic-layer-deposition-enabled nonwoven membranes with hierarchical ZnO nanostructures for switchable water/oil separations. J Membr Sci 493:478–485

    Article  CAS  Google Scholar 

  23. Li JS, Ueda E, Nallapaneni A, Li LX, Levkin PA (2012) Printable superhydrophilic-superhydrophobic micropatterns based on supported lipid layers. Langmuir 28(22):8286–8291

    Article  CAS  Google Scholar 

  24. Godeau G, Darmanin T, Guittard F (2015) Switchable and reversible superhydrophobic and oleophobic surfaces by redox response using covalent S-S bond. React Funct Polym 96:44–49

    Article  CAS  Google Scholar 

  25. Chhatre SS, Tuteja A, Choi W, Revaux A, Smith D, Mabry JM, McKinley GH, Cohen RE (2009) Thermal annealing treatment to achieve switchable and reversible oleophobicity on fabrics. Langmuir 25(23):13625–13632

    Article  CAS  Google Scholar 

  26. Taleb S, Darmanin T, Guittard F (2014) Elaboration of voltage and ion exchange stimuli-responsive conducting polymers with selective switchable liquid-repellency. ACS Appl Mater Interfaces 6(10):7953–7960

    Article  CAS  Google Scholar 

  27. Darmanin T, Guittard F (2013) pH- and voltage-switchable superhydrophobic surfaces by electro-copolymerization of EDOT derivatives containing carboxylic acids and long alkyl chains. ChemPhysChem 14(11):2529–2533

    Article  CAS  Google Scholar 

  28. Döbbelin M, Tena-Zaera R, Marcilla R, Iturri J, Moya S, Pomposo JA, Mecerreyes D (2009) Multiresponsive PEDOT–ionic liquid materials for the design of surfaces with switchable wettability. Adv Funct Mater 19(20):3326–3333

    Article  Google Scholar 

  29. Cheng Z, Lai H, Du Y, Fu K, Hou R, Li C, Zhang N, Sun K (2014) pH-induced reversible wetting transition between the underwater superoleophilicity and superoleophobicity. ACS Appl Mater Interfaces 6(1):636–641

    Article  CAS  Google Scholar 

  30. Xu L, Chen W, Mulchandani A, Yan Y (2005) Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew Chem Int Ed 44(37):6009–6012

    Article  CAS  Google Scholar 

  31. Huang Y, Hu M, Yi S, Liu X, Li H, Huang C, Luo Y, Li Y (2012) Preparation and characterization of silica/fluorinated acrylate copolymers hybrid films and the investigation of their icephobicity. Thin Solid Films 520(17):5644–5651

    Article  CAS  Google Scholar 

  32. Wagner N, Theato P (2014) Light-induced wettability changes on polymer surfaces. Polymer 55(16):3436–3453

    Article  CAS  Google Scholar 

  33. Soroushnia S, Bastani S, Mohseni Bozorgi M, Rostami M (2015) Surface properties and surface patterning of UV-curable coating using perfluorosilane-treated nanosilica. Prog Org Coat 85:31–37

    Article  CAS  Google Scholar 

  34. Chiavari C, Balbo A, Bernardi E, Martini C, Zanotto F, Vassura I, Bignozzi MC, Monticelli C (2015) Organosilane coatings applied on bronze: influence of UV radiation and thermal cycles on the protectiveness. Prog Org Coat 82:91–100

    Article  CAS  Google Scholar 

  35. Hou W, Wang Q (2009) UV-driven reversible switching of a polystyrene/titania nanocomposite coating between superhydrophobicity and superhydrophilicity. Langmuir 25(12):6875–6879

    Article  CAS  Google Scholar 

  36. Li W, Guo T, Meng T, Huang Y, Li X, Yan W, Wang S, Li X (2013) Enhanced reversible wettability conversion of micro-nano hierarchical TiO2/SiO2 composite films under UV irradiation. Appl Surf Sci 283:12–18

    Article  CAS  Google Scholar 

  37. Weibel DE (2011). Polymer assisted surface modification by photons. Nova Science Publishers, Inc., New York

  38. Awaja F, Gilbert M, Kelly G, Fox B, Pigram PJ (2009) Adhesion of polymers. Prog Polym Sci 34(9):948–968

    Article  CAS  Google Scholar 

  39. Peyvandi A, Abideen SU, Huang Y, Lee I, Soroushian P, Lu J (2014) Surface treatment of polymer microfibrillar structures for improved surface wettability and adhesion. Appl Surf Sci 289:586–591

    Article  CAS  Google Scholar 

  40. Contreras CB, Chagas G, Strumia MC, Weibel DE (2014) Permanent superhydrophobic polypropylene nanocomposite coatings by a simple one-step dipping process. Appl Surf Sci 307:234–240

    Article  CAS  Google Scholar 

  41. Ramanathan R, Weibel DE (2012) Novel liquid–solid adhesion superhydrophobic surface fabricated using titanium dioxide and trimethoxypropyl silane. Appl Surf Sci 258(20):7950–7955

    Article  CAS  Google Scholar 

  42. Chagas GR, Weibel DE (2014) Development of poly(propylene) superhydrophobic surfaces by functionalised TiO2 nanoparticles: effect of solvents and dipping times. Macromol Symp 344(1):55–62

    Article  CAS  Google Scholar 

  43. Feng X, Zhai J, Jiang L (2005) The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Ed 44(32):5115–5118

    Article  CAS  Google Scholar 

  44. Miyauchi M, Kieda N, Hishita S, Mitsuhashi T, Nakajima A, Watanabe T, Hashimoto K (2002) Reversible wettability control of TiO2 surface by light irradiation. Surf Sci 511(1–3):401–407

    Article  CAS  Google Scholar 

  45. Wardle B (2009) Principles and applications of photochemistry. Wiley, Manchester

    Google Scholar 

  46. Shultz AN, Jang W, Hetherington Iii WM, Baer DR, Wang L-Q, Engelhard MH (1995) Comparative second harmonic generation and X-ray photoelectron spectroscopy studies of the UV creation and O2 healing of Ti3+ defects on (110) rutile TiO2 surfaces. Surf Sci 339(1–2):114–124

    Article  CAS  Google Scholar 

  47. Wang L-Q, Baer DR, Engelhard MH, Shultz AN (1995) The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects. Surf Sci 344(3):237–250

    Article  CAS  Google Scholar 

  48. Moulder JF, Chastain J (1992) Handbook of X-ray photoelectron spectroscopy:  a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Division, Perkin-Elmer Corporation

  49. Yu J, Zhao X, Zhao Q (2001) Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method. Mater Chem Phys 69(1–3):25–29

    Article  CAS  Google Scholar 

  50. Guillot J, Fabreguette F, Imhoff L, Heintz O, Marco de Lucas MC, Sacilotti M, Domenichini B, Bourgeois S (2001) Amorphous TiO2 in LP-OMCVD TiNxOy thin films revealed by XPS. Appl Surf Sci 177(4):268–272

    Article  CAS  Google Scholar 

  51. Zhang F, Jin S, Mao Y, Zheng Z, Chen Y, Liu X (1997) Surface characterization of titanium oxide films synthesized by ion beam enhanced deposition. Thin Solid Films 310(1–2):29–33

    Article  CAS  Google Scholar 

  52. Zhao X-T, Sakka K, Kihara N, Takata Y, Arita M, Masuda M (2006) Hydrophilicity of TiO2 thin films obtained by RF magnetron sputtering deposition. Curr Appl Phys 6(5):931–933

    Article  Google Scholar 

  53. Wang X-P, Yu Y, Hu X-F, Gao L (2000) Hydrophilicity of TiO2 films prepared by liquid phase deposition. Thin Solid Films 371(1–2):148–152

    Article  CAS  Google Scholar 

  54. Sanjinés R, Tang H, Berger H, Gozzo F, Margaritondo G, Lévy F (1994) Electronic structure of anatase TiO2 oxide. J Appl Phys 75(6):2945–2951

    Article  Google Scholar 

  55. Joo S, Baldwin DF (2010) Adhesion mechanisms of nanoparticle silver to substrate materials: identification. Nanotechnology 21(5):1–12

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnoloǵico (CNPq) (Processes No. 550461/2012-4 and 477200/2012-5) and LNLS-National Synchrotron Light Laboratory, Brazil. The authors would also like to acknowledge the technical assistance of the Accelerator Group, especially the VUV and Soft X-ray Spectroscopy Group. G.R. Chagas thanks CAPES for the fellowship awarded. The authors thank Centro de Nanociência e Nanotecnologia (CNANO), UFRGS, for the SEM analysis. We also thank Alessandra F. Baldissera and Prof. Carlos A. Ferreira from Polymeric Materials Laboratory (LaPol), UFRGS for the assistance on adhesion measures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Eduardo Weibel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chagas, G.R., Weibel, D.E. UV-induced switchable wettability between superhydrophobic and superhydrophilic polypropylene surfaces with an improvement of adhesion properties. Polym. Bull. 74, 1965–1978 (2017). https://doi.org/10.1007/s00289-016-1817-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1817-x

Keywords

Navigation